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ABSTRACT

In this paper we consider a sequential, coarse-to-fine estima-
tion of a piecewise constant function with smooth boundaries. Ac-
curate detection and localization of the boundary (a manifold) is
the key aspect of this problem. In general, algorithms capable of
achieving optimal performance require exhaustive searches over
large dictionaries that grow exponentially with the dimension of
the observation domain. The computational burden of the search
hinders the use of such techniques in practice, and motivates our
work. We consider a sequential, coarse-to-fine approach that in-
volves first examining the data on a coarse grid, and then refining
the analysis and approximation in regions of interest. Our estima-
tors involve an almost linear-time (in two dimensions) sequential
search over the dictionary, and converge at the same near-optimal
rate as estimators based on exhaustive searches. Specifically, for
two dimensions, our algorithm requires O(n7/6) operations for an
n-pixel image, much less than the traditional wedgelet approaches,
which require O(n11/6) operations.

1. INTRODUCTION

The dimensionality of signals is often lower than the ambient ob-
servation space. For example, a pure sinusoidal process occu-
pies a one-dimensional linear subspace. Linear subspace models
and subspace identification techniques have played a major role
in modern signal processing. However, in many cases the signal
may occupy a nonlinear lower-dimensional manifold of the ob-
servation space. A simple example of this phenomenon occurs
in the analysis of images. For example, consider a binary image
composed of a “white” region and a “black” region separated by a
smooth boundary. This “image” is simply a one-dimensional curve
(the boundary) embedded in the two-dimensional image space.
Estimating or coding the image involves identifying or learning
the manifold corresponding to the boundary. Several investigators
have proposed new basis functions or dictionaries for describing
(d−1)-dimensional manifolds embedded in d-dimensional spaces
(for d=2,3), including wedgelet/beamlet dictionaries and curvelet
frames [1, 2, 3]. While promising, the dictionaries are overcom-
plete and can be quite computationally demanding to implement.
This computational hurdle motivates our work here. We consider
sequential, coarse-to-fine manifold learning strategies. The basic
idea is to first examine the data on a coarse grid, and then refine the
analysis and approximation in regions predicted near the boundary.
By carefully examining the bias and variance trade-offs in each
stage, we show that manifolds can be optimally recovered through
a sequential process in almost linear-time (in two dimensions),

Supported by the National Science Foundation, grants CCR-0310889
and ANI-0099148, and the Office of Naval Research, grant N00014-00-1-
0390

yielding significant computational savings. The work presented
here has conceptual similarities with the work by Blanchard and
Geman, which also exploits coarse-to-fine decision making [4].

2. PROBLEM FORMULATION

Consider a function f defined on the d-dimensional hypercube
[0, 1]d ⊆ R

d (assume d ≥ 2). The function consists of con-
stant regions separated by (d − 1)-dimensional boundaries. We
assume these boundaries are Hölder-2 smooth (for example, twice
continuously differentiable curves). In two dimensions this corre-
sponds to the Horizon class of images described in [1], as shown
in Figure 1(a). We do not observe the function f directly, but only
samples which have been corrupted by noise. Consider a partition
of the unit hypercube into n sub-hypercubes of sidelength n−1/d

(assume without loss of generality that n is a power of d). De-
note each hypercube by V (i), i ∈ {1, . . . , n}. In Figure 1(a) this
procedure is shown for d = 2. Each one of these “small” sub-
hypercubes corresponds to a voxel, and these determine the finest
resolution we consider. This initial partition can be generated by a
recursive dyadic partition (RDP). First divide the domain into 2d

sub-hypercubes of equal size. Repeat this process again on each
sub-hypercube. Proceeding in this fashion 1/d log2 n times yields
the initial partition. This gives rise to a complete RDP of resolu-
tion n (i.e., the original domain is divided into n cells). The RDP
process can be represented with a rooted tree structure: the root
node corresponds to the entire domain (i.e., the unit hypercube),
their children nodes correspond to the 2d sub-hypercubes, and so
on.

For each voxel we associate the value θ(i),

θ(i) =
1

|V (i)|
Z

V (i)

f ,

the average of f over the voxel V (i), where i ∈ {1, . . . , n} and
|V (i)| denotes the volume of V (i). We do not observe the value
of each voxel directly, but instead only a noisy corrupted ver-
sion. Our measurements, x(i), are samples of the field θ(i) cor-
rupted by additive white Gaussian noise with variance σ2, that
is, x(i) ∼ N (θ(i), σ2), where we assume that all measurements
are statistically independent. Given these measurements we would
like to estimate the voxel values θ(i).

Let Θ = {θ(i)}i and x = {x(i)}i. Let bθx(i) be our esti-
mate for the value of voxel i (in the following we will drop the
dependence on x for the ease of notation). Define bΘ = {bθ(i)}i.
The measure of performance we consider is the Mean Square Error
(MSE), defined as

MSE(bΘ, Θ) ≡ E

"
1

n

nX
i=1

“
θ(i) − bθ(i)”2

#
. (1)
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(a) (b)

Case 3 Error

(c) (d)

Fig. 1. Example boundary estimation problem. (a) Initial RDP
used in traditional wedgelet methods. (b) Initial coarse-resolution
RDP used in the preview stage. (c) Partition generated in a preview
stage. Note the example of a Case 3 error. (d) Final partition
generated during the refinement stage.

3. MAXIMUM PENALIZED LIKELIHOOD
ESTIMATORS

For any consistent estimator bΘ the MSE (1) decreases as the num-
ber of voxels, n, increases. For piecewise constant functions on
[0, 1]d separated by (d− 1)-dimensional Hölder-2 boundaries, the
MSE decays no faster than O(n−2/(d+1)), the minimax lower
bound [5].

It turns out that it is possible to nearly achieve the optimal
rates above using maximum penalized likelihood techniques. To
see this, first note that the complete RDP can be pruned back to
produce an RDP with non-uniform resolution. Let Pn be the class
of all possible prunings. For each P ∈ Pn, there is an associated
tree structure (generally of non-uniform depth corresponding to
the non-uniform resolution of most RDPs). The leafs of each tree
represent dyadic (side-length equal to a power of 2) hypercube
regions of the associated partition. Consider a certain RDP P ,
and define the estimator of the field on each leaf of the partition to
be the least-squares fit of a wedgelet to the measurements in the
corresponding hypercube. In d dimensions, a wedgelet fit consists
of a (d − 1)-dimensional hyperplane separating a hypercube into
two regions and a constant fit to the data in each region. Let bΘP

denote a model of the field (based on the least-squares model fits
on each square of P ). The empirical measure of performance is
the sum-of-squared errors between bΘP and the data:

R
“bΘP ,x

”
=

X “bθP (i) − x(i)
”2

.

For fixed partition P , the choice of bΘP that minimizes R(bΘP ,x)
is simply given by the least-squares fits on each square, as dis-

cussed above. Now define the complexity penalized estimator as

bΘ = arg min
eΘP :P∈Pn

R
“eΘP ,x

”
+ 2σ2c|P | log n, (2)

where |P | denotes the number of hypercubes in the partition P
and c is constant which will be defined later. This optimization can
be solved using a bottom-up pruning algorithm [1, 6]. It has the
further advantage that upper bounds on the estimation error can
be established using several recent information-theoretic results,
most notably the Li-Barron bound [7] and Nowak and Kolaczyk’s
generalization of this bound [8]. Specifically, if c is chosen so that
the dictionary of estimators satisfies the Kraft inequality,X

eΘP :P∈Pn

e−c|P | log n ≤ 1,

then

MSE(bΘ, Θ) ≤ min
eΘP :P∈Pn

2

n
R

“eΘ, Θ
”

+
8σ2c|P | log n

n
. (3)

For the remainder of the paper assume that f has Hölder-2
(d − 1)-dimensional smooth boundaries. For this class of func-
tions it is known that the minimax MSE rate is bounded below by
O(n−2/(d+1)). It can be shown that solving the optimization in
(2) yields a partition which balances the approximation error and
estimation error terms in the bound on the MSE in (3), resulting in

a final bound of O
“
(log n/n)−2/(d+1)

”
.

The main challenge associated with such methods involves the
optimization in (2). In general, the algorithms needed to achieve
the performance rates described above must exhaustively examine
all models in each of the candidate partitions P ∈ Pn. For exam-
ple, in the two-dimensional wedgelet case, the number of wedgelet
models required depends on the δ-resolution of the wedgelet anal-
ysis, which determines the approximation accuracy [1]. Specif-
ically, for a hypercube of sidelength � the number of wedgelet
models that must be evaluated is O(�/δ)2 (and each evaluation re-
quires O(n�2) operations). Wedgelet analysis nearly achieves the
minimax performance rate for the class of images under consider-
ation when δ ∼ n−2/3. Since wedgelet approximations must be
calculated for each candidate partition P ∈ Pn, a total of O(n4/3)
wedgelet fits must be computed [1], resulting in an overall compu-
tational complexity of O(n7/3). This can be improved slightly by
noting that the evaluation of the wedgelet models can be done in
a incremental fashion, where each wedgelet model fit is evaluated
using previously evaluated models; this means that for a given hy-
percube of sidelength �, after the first wedgelet fit is calculated,
each successive wedgelet fit can be calculated in O(

√
n�) opera-

tions as opposed to O(n�2) operations. Taking this into account
yields an overall computational complexity of O(n11/6), which
limits the scope of practical applications.

4. COARSE-TO-FINE ESTIMATION

The heavy computational complexity of the above techniques mo-
tivates our work here. In the constant regions of the function f ,
the piecewise constant approximation estimates perform well. The
task that limits the rates of convergence of the MSE is the estima-
tion of f in the vicinity of the boundaries. The main idea is there-
fore to perform the estimation task in a sequential, coarse-to-fine
fashion: In the first step (termed the Preview step), a coarse estima-
tion of the field is performed, using only constant fits to each leaf
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in the pruned RDP, as an attempt to identify the approximate loca-
tion of the boundary. In a second step (termed the Refinement step)
we perform a wedgelet boundary fit in areas that were identified as
possible boundary regions. If the Preview step is effective then we
will perform wedgelet fits (which are computationally demanding)
only in the regions were they are needed, instead of applying and
testing them throughout the entire domain.

In the remainder of this section, we show that this method (a)
nearly achieves the minimax performance rate of O(n−2/(d+1))
and (b) requires significantly fewer computational resources than
wedgelet methods based on exhaustive dictionary searches. In the
following we are going to omit the logarithmic factors to make the
presentation lighter.

4.1. Error Analysis

In the first step of our approximation we start with an uniform RDP
with nγ voxels, as shown in Figure 1(b). We generate an estima-
tor by pruning this RDP, as shown in Figure 1(c), and decorating
each leaf with a constant model. Let Vc(i) denote the voxels cor-
responding to the nγ resolution uniform RDP (we will refer to this
as the coarse resolution, as opposed to the fine resolution, which
has a total of n voxels). Note that each coarse resolution voxel
contains n1−γ measurements. For each of these coarse resolution
voxels let xc(i) be the average of the measurements falling into
Vc(i), therefore

xc(i) ∼ N (θc(i), n
−(1−γ)σ2),

where {xc(i)}i are statistically independent and

θc(i) =
1

n1−γ

X
j:V (j)⊆Vc(i)

θ(i).

We can evaluate the mean squared error at the coarse resolution,
and it is given by

MSEc ≡ E

"
1

nγ

nX
i=1

(θc(i) − bθc(i))
2

#
= O(n−(1−γ)(nγ)−1/d)

= O(n−1+γ d−1
d ). (4)

This can be derived by noting that the variance of each xc(i) is
n−(1−γ)σ2 and the MSE of the piecewise constant estimator at
resolution nγ decays like O((nγ)−1/d), for unit variance noise.

Denote the pruned RDP at the coarse resolution by RDPc. In
the refinement step we consider a wedgelet fit on the leafs of RDPc

that were not pruned (i.e., the leafs of RDPc that are at the deep-
est level), keeping all the other leafs unaltered, as shown in Fig-
ure 1(d). The main reasoning is that with very high probability
(we will make this precise below), most voxels at the coarse res-
olution that do not intersect the boundary are going to be pruned,
so we can use the unpruned voxels as a good indication for the
presence of a boundary.

In the following we evaluate the asymptotic behavior of the
MSE at the fine resolution for the two step procedure. Our analy-
sis makes repeated use of the fact that the number of coarse voxels

intersecting the boundary is O(nγ d−1
d ) (this follows from the as-

sumption that the boundary is Hölder-2, and therefore the bound-
ary set has box-counting dimension d − 1). For each leaf in the

pruned RDPc we consider three situations, and analyze the impact
on the overall MSE:

Case 1: Leafs of RDPc that do not intersect the boundary: In
this case, averaging the observations is the optimal solution and the
MSE at the fine resolution behaves like (4). Therefore these leafs

contribute O(n−1+γ d−1
d ) to the fine resolution MSE. This dictates

our choice of γ: by choosing γ = d
d+1

we obtain the desired MSE

rate of O(n−2/(d+1)).
Case 2: Leafs of RDPc that were not pruned: For leafs in this

scenario we are going to perform a wedgelet fit (the refinement
step) and the MSE decays exactly as if we were doing wedgelet
fits everywhere. Therefore these leafs contribute O(n−2/(d+1)) to
the fine resolution MSE.

Case 3: Leafs of RDPc that were pruned, but intersect the
boundary: This scenario corresponds to a case were a voxel in-
tersecting the boundary was somehow “erroneously” pruned to a
larger leaf. Therefore this leaf is approximated with a constant, but
contains a fragment of the boundary. For large enough n the func-
tion f in the hypercube corresponding to this leaf is composed of
two constant regions. Because the voxel containing the boundary
was pruned, we know that the volume of one of the two constant
regions is small with respect to the total volume of the leaf hyper-
cube, and behaves like O(n−1/2+γ/2) (this follows from the fact
that the squared bias at the coarse resolution in bounded by (4)).
This yields an average bias squared at the fine resolution of order
O(n−1/2+γ(1/2−1/d)). Setting γ = d

d+1
(which is necessary to

bound the Case 1 error) does not result in the desired fine resolu-
tion MSE rate of O(n−2/(d+1)).

We propose a technique that overcomes this difficulty while
incurring only minimal extra computational cost. Recall that, for
large enough n, the function f in the hypercube corresponding to
a pruned leaf is composed of two constant regions. Case 3 errors
occur when the boundary of the two regions is closely aligned with
the uniform RDP of resolution nγ/2d, consisting of nγ/2d hyper-
cubes; this is just one level of resolution coarser than the unpruned
coarse RDP. An example Case 3 error is depicted in Figure 1(c).
The basic idea is then to perform two preview stages – one as de-
scribed above, and the other on a version of the partition which
is shifted by one coarse resolution voxel in each coordinate. This
ensures that the boundary is detected with high probability in one
of the preview stages. A voxel erroneously pruned in one of the
preview stages would not be pruned in the other preview stage. In
the refinement stage we perform a wedgelet fit to any coarse res-
olution voxel that was left unpruned in either the first or second
preview steps.

4.2. Computational Complexity

We will describe here the computational complexity associated
with the two-dimensional case, as studied in the simulations; the
extension to d dimensions is straightforward. First, recall that
wedgelets are fit to all leafs of RDPc which were not pruned,
and since γ = 2/3, each of these hypercubes has sidelength � =

n−1/3 and contains n1/3 pixels. Because the wedgelet resolution
δ ∼ n−2/3, (�/δ)2 ∼ n2/3 wedgelet fits are evaluated at each of
these leafs. Since there are O(n1/3) such leafs, a total of O(n)
wedgelet fits must be calculated, resulting in an overall computa-
tional complexity of O(n4/3). Note that the complexity can be
reduced to O(n7/6) operations by calculating wedgelet fits incre-
mentally, as described earlier. Thus this coarse-to-fine approach is
significantly faster that the traditional wedgelet analysis method.
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5. SIMULATIONS

We demonstrate the effectiveness of the proposed method using
the Shepp-Logan phantom brain image, commonly used in medi-
cal imaging simulations. The n noisy measurements, arranged on
a 256 × 256 grid, are displayed in Figure 2(a); in this example,
σ2 = 0.001 and the mean pixel value is 0.15. For this simulation,
the penalization weights are chosen according to the theory in Sec-
tion 3. Under this scenario, nγ = 2564/3, and so the preview stage
is initialized with an RDP of 4096 4×4 coarse resolution squares.
The preview partition in Figure 2(b) demonstrates how the initial
Haar estimate does not prune the initial coarse resolution squares
in regions near the boundaries; after the preview stage pruning,
the initial coarse resolution RDP of 4096 squares has been pruned
back to a nonuniform RDP with only 1199 4×4 squares remaining
after using the procedure described in Section 4.

(a) (b)

(c) (d)

Fig. 2. Shepp-Logan phantom. (a) 256 × 256 noisy measure-
ments, σ2 = 0.001, MSE = 0.0115. (b) Preview partition. (c)
Shepp-Logan phantom estimate formed by fitting one wedgelet or
constant to each of the unpruned squares from the preview stage;
MSE = 0.000504. (d) Shepp-Logan phantom estimate using stan-
dard wedgelet, MSE = 0.00163.

The final estimate after the refinement stage is displayed in
Figure 2(c); recall that this requires O(n4/3) operations to com-
pute. This estimate can be compared to a standard wedgelet de-
composition, as seen in Figure 2(d). This requires O(n7/3) op-
erations; i.e., a factor of O(n) more operations than the proposed
method. These estimates were calculated on a 667 MHz PowerPC
G4 with 768 MB of memory running Mac OS 10.2.8; on this ma-
chine, the standard wedgelet estimate was computed in 665 sec-
onds and the coarse-to-fine estimate was computed in 37.4 sec-
onds. This is an excellent example of how the proposed method
performs as well as a standard wedgelet estimate in terms of both
MSE and visual quality with significant computational savings.

6. FINAL REMARKS

In this paper we study the estimation of piecewise constant func-
tions, where the different constant regions are separated by Hölder-
2 smooth boundaries. Techniques for this (in two dimensions)
were previously developed by Donoho [1]. In this work we build
on the class of models described in [1], but instead of perform-
ing a computationally demanding search over a large dictionary of
models, we proceed in a sequential fashion, using a two stage pro-
cess, where in the first stage we select a subset of image models,
and in the second stage we make a final model selection. While
this is a greedy procedure, it has desirable features, such as low
computational cost, and we prove that it is asymptotically optimal.
Although in this paper we present a specific problem, where the
computational cost drives our choice of the sequential approach,
there are other scenarios and problems that can benefit from the
same kind of sequential approaches. For example, in estimation
problems in sensor networks [9], a sequential approach is used so
save valuable communication resources. Currently we are work-
ing on generalizations of the above sequential procedures for other
estimation and classification problems.
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