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ABSTRACT

Detection of inhomogeneous regions in a homogeneous background
(e.g. textures) is considered. The underlying assumption is that
samples from the homogeneous background reside on an under-
lying manifold, while samples that intersect with the embedded
object (i.e. the inhomogeneous region) are ‘away’ from this man-
ifold. The empirical distance from each sample (which will be
specified in the paper) to the manifold is a quantity to determine
the likelihood of a sample’s overlapping with an embedded object.
This result can consequently be integrated with the ‘Significant
Runs Algorithms’, to predict the presence of embedded structures.
A ‘local projection’ algorithm is designed to estimate the distances
between samples and the manifold. Simulation results for features
embedded in textural imageries show promises. This work can be
extended to a formal theoretical framework for underlying feature
detection. It is particularly suitable for textural images.

1. INTRODUCTION

We consider detecting objects in a homogeneous background. The
objects are regions within which the distributional properties of
these image pixels are different from those in the rest of the im-
age. Two exemplary cases are given in Figure 1 and 2; in each
case, there is a textural image, a trigonometric-function-shaped
slim regions with contents different from the texture, and a combi-
nation of both of them. The detection problem is (1) to determine
the presence of a object region, and furthermore (2) to infer the
location and shape of the object region.

This problem is a fundamental problem in many applications,
such as target recognition, satellite image processing, and so on.

In this paper, we explore the following idea: (1) the back-
ground makes the majority of an image, while a object region is
the ‘minority’; (2) In addition, the majority of the images (from
the homogeneous background), if appropriately sampled, are lo-
cated in a low-dimensional manifold; (3) For samples that over-
lap with the embedded region, they are ‘away’ from the manifold.
Given that the above three conjectures are true, the distance from
a sampled patch to the underlying manifold gives the probabil-
ity that a sample overlaps with the embedded object. If all the
high probability samples are relative concentrated, then one has
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(c) Combined.

Fig. 1. Example of a object (shaped like a trigonometric function,
with its own textural distribution, as depicted in figure (b)) that is
embedded in a textural image (figure (a)). Figure (c) is the combi-
nation: (c)=(a)+(b).

evidence for the presence of an embedded object; otherwise there
may not be an embedded object. An illustration of an underlying
manifold for samples (e.g., patches) from a homogeneous back-
ground is given in Figure 3. A previously developed framework
named significantly run algorithms [1, 2, 3] can be used to process
the patterns of the high probability samples. The distance from a
sample to an underlying manifold can be empirically estimated by
an algorithm—~Local Linear Projection (LLP)—that is designed in
other occasions [4, 5]. The principal idea of LLP is inspired by
LLE [6] and ISOMAP [7]. Simulations demonstrated the effec-
tiveness of this approach.

The rest of this paper is organized as follows. In Section 2,
the formulation of the problem is given. In Section 3, the distance
to a manifold is defined. In Section 4, the Local Linear Projec-
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(c) Combined.

Fig. 2. Another example of embedded object.

Manifold

Fig. 3. An illustration of the presence of a manifold.

tion algorithm is described. Section 5 describes the Significance
Run Algorithm (SRA). In Section 6, some issues in parameter es-
timation are discussed. In Section 7, we present simulation results.
Some discussions are presented in Section 8. Finally, we conclude
in Section 9.

2. FORMULATION

For an N by N image, let y;,7 € Z, denote all of the 8 by 8
sampled patches with two diagonal corners being at (4a+1, 4b+1)
and (4a + 8,4b + 8), where 0 < a,b < (N — 8)/4. The patch
size (8 x 8) is chosen for computational convenience. We assume
that if patch y; is sampled in the background, then

yi:f(ti)+5iv ier

where function f(-) is a locally smooth function that determines
the underlying manifold, ¢;’s denote the underlying parameters for
the manifold, and ¢;’s are random errors.

3. DISTANCE TO MANIFOLD

For any patch, y;, the distance from this patch to its original image
on the manifold, which is f(;), is

lly: — f(ti)ll2- )

As explained earlier, this distance measures how likely the patch is
in the background. The larger the above distance is, the less likely
this patch is on the background. An illustration of the distance

Observed patch

Distance to the manifold

Projection on the manifold

Manifold

Fig. 4. An illustration of distance from an observed patch to the
manifold.

from a patch to the manifold is given in Figure 4. Note that func-
tion f(-) is not available. In the next section, a numerical method
is designed to estimate this distance.

4. LLP: LOCAL LINEAR PROJECTION

An LLP can be applied to extract the local low-dimensional struc-
ture. In the first step, neighboring observations are identified. In
the second step, a Singular Value Decomposition (SVD) or a Prin-
cipal Component Analysis (PCA) is used to estimate the local lin-
ear subspace. Finally, the observation is projected into this sub-
space. An illustration of LLP in 2-D with local dimension being
equal to 1 (i.e., linear) and 15 nearest neighbors is provided in
Figure 5. A detailed description of the algorithm is given in the

locally fitted straight line

An observation

O : nearest neighbours
@ : Local linear projection
Underlying manifold

Fig. 5. An illustration of Local Linear Projection in a 2-D space
with local dimension being equal to 1 and 15 nearest neighbors.

following.

ALGORITHM: LLP

for each observation y;,¢ = 1,2,3,..., N,
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1. Find the K -nearest neighbors of y;. The neighboring points
are denoted by 1, Y2, ..., UK-

2. Use PCA or SVD to identify the linear subspace that con-
tains most of the information on vectors 91, %2, ..., Yi-
Suppose the linear subspace is A;, and P4, (x) denote the
projection of a vector z into this subspace. Let ko denote
the assumed dimension of the embedded manifold, then
subspace A; can be viewed as a linear subspace spanned
by the vectors associated with the first ko singular values.

3. Project y; into the linear subspace .4; and let g; denote this
projection:  §; = P, (ys)-

end.

The distance between y; (¢ € Z) and f(t;) can be estimated
by llyi — gill2-

5. SRA: SIGNIFICANT RUN ALGORITHM

Even though the distance to a manifold can be estimated, it still
remains unclear when the distance is significantly large. Instead
of studying the distribution of the distances themselves, we study
their spatial patterns by using a significance run algorithm (SRA),
which was introduced in [1], and was later used in [2] and [3].

A summary of a SRA is as follows. Each patch is associated
with a node. Because patches are equally spaced, they form a table
like in Figure 6. There is an edge between two nodes iff their cor-

Fig. 6. An illustration of Significance Graph and a Significance
Run.

responding patches are spatially connected. A node is significant
iff the corresponding distance ||y; — ¥;||2 is above a prescribed
threshold (denoted by 77). A significance run is a chain of con-
nected significant nodes. The length of the longest significance run
is the test statistic: an embedded object is claimed to be present iff
this length is above a constant (denoted by 72). It has been shown
in other occasions (e.g., [1, 3]) that SRA leads to a powerful test.

Note that both 7; and 73 can be determined numerically. Con-
stant 77 can be a given percentile of the empirical estimates of the
distances: ||y; — §i||2. Constant 77 can be derived from simula-
tions.

6. PARAMETER ESTIMATION

In the LLP, one needs to specify the number of nearest neighbors
and the local dimension. This can be done by studying the em-
pirical distribution of the distances and the total residual sums of
squares.

6.1. Number of Nearest Neighbors

An illustration of the percentiles of the distances to the nearest
neighbors are given in Figure 7. We choose 50 nearest neighbors,
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Fig. 7. Percentiles of the distances from the nearest neighbors.

because it is approximately a kink point in this figure. It is pos-
sible to choose the number of nearest neighbors by studying the
distances to the nearest neighbors. In this paper, we do not pursuit
in this direction.

6.2. Local Dimension

The problem of estimating local dimensionality has been analyzed
in [6] and [7]. There are followup works in this line. Due to space,
we omit the details. Figure 8 gives the plot of the residual sums of
squares (3,7 [lyi — 9:l|3) versus the local dimensions (as ko in
the LLP). An approximate kink point is at kg = 15, which is our

residual sums of squares
o

5 10 15 20 25 30 35
local dimensions

Fig. 8. Residual sum of squares versus local dimensions.

choice of local dimension in Simulations.

7. SIMULATIONS

We apply the above approach to the two figures in Figure 1 (¢) and
Figure 2 (c). The positions of the significant patches are displayed
in Figure 9 (for the water image) and in Figure 10 (for the wood
image) respectively. In both cases, the constant 77 is chosen to
be the 95th percentile of the squared distances: |ly; — 4|3, Vi €
Z. Obviously, the significant patches are concentrated around the
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Fig. 9. Pattern of significant patches for water image. Northwest-
ern corners of significant patches are marked by dark dots.

Fig. 10. Pattern of significant patches for wood image. Northwest-
ern corners of significant patches are again marked by dark dots.

embedded object, which is the trigonometric shape. Hence a SRA
will unveil the presence of the object.

For comparison, Figure 11 gives the patterns of significant
patches when there is no embedded objects.

8. DISCUSSION

By modifying the structure of the significant graph, the above ap-
proach can be generalized for more general object, e.g., instead of
functions, one can consider curves, or even non-filamentary ob-
jects. We leave this as a future work.

If the background is non-homogeneous, which is true in many
cases, then the above approach will fail. The proposed framework
can be utilized to derive a general theory on when an embedded
object is detectable, and when it is not. This will be another future
work.

9. CONCLUSION

A framework that utilizes the underlying geometric distribution is
proposed to detect objects in a homogeneous background. Simula-
tions showed the promises of the proposed method. The proposed
method takes advantages of an underlying manifold, on which the
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Fig. 11. Pattern of significant patches for water and wood image,
while there is no embedded object.

sampled patches from the image reside. Significant Run Algorithm
is utilized to generate a hypothesis testing procedure.
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