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ABSTRACT

A sequential source localization method using particle
filter is presented to estimate and track multiple-target lo-
cations. This method is designed to make use of acoustic
signal measured at multiple acoustic sensors randomly de-
ployed in a wireless distributed sensor network. By using
the particle filter, non-Gaussian probability density function
of the target locations are represented by a discrete set of
“particles”. The positions of these particles are propagated
sequentially using known state transition equation, and up-
dated using new location estimates via the observation equa-
tion. Compared to a previously proposed Maximum Like-
lihood source localization algorithm, this new approach is
computationally effective and more robust to parameter per-
turbation.

1. INTRODUCTION

Source localization is an important application in the dis-
tributed sensor network system. The objective is to esti-
mate the positions of the moving targets within a sensor field
monitored by a sensor network. Most localization methods
depend on three types of physical variables measured by or
derived from sensor readings for localization: time delay
of arrival (TDOA)[1], direction of arrival (DOA)[2] and re-
ceived signal strength[3].

For wireless distributed sensor network applications, en-
ergy (intensity) based source localization method is an ap-
propriate choice since it will reduce the computation burden
as well as communication bandwidth [3]. In addition, the
coarse time interval for computing each new energy read-
ing will also much relieve the burden of accurate time syn-
chronization among sensors using wireless communication
channel.

A maximum likelihood (ML) source localization method
using acoustic energy readings in the wireless sensor net-
work was presented in [3]. Compared to the existing acous-
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tic energy based source localization methods, ML method
delivers more accurate results and offers the enhanced capa-
bility of multiple source localization. However, ML method
has several limitations. Specifically, ML method is sensitive
to the parameter perturbation and the computational com-
plexity is high for multi-target location estimation. These
limitations can be addressed by applying particle filtering.

Particle filter was applied in video conference speaker
localization application to filter out the spurious speaker lo-
cation induced by reverberation [4]. In this paper, we will
apply a particle filter to determine the source locations in
the wireless sensor network. Using the particle filter, the
prior and posterior likelihood of the source states are effec-
tively represented by a set of particles. This set of parti-
cles is sequentially propagated by particle filtering based on
the state transition model and is updated upon receiving the
new measurement. It eliminates the requirement of a com-
prehensive search over the whole location space and filters
out the spurious locations caused by the strong background
noise such as wind gust.

2. SEQUENTIAL SOURCE LOCALIZATION

2.1. Sequential Bayesian Estimation

In a sequential Bayesian estimation framework, the state
vector at time t, denoted by αt, is estimated using obser-
vations at time t, xt, and previous state estimate αt−1 at
time t − 1 in a sequential manner. It is assumed that the
state transition equation

αt+1 = ft(αt,wt) (1)

and the observation equation

xt = gt(αt,vt) (2)

are known. The pdf of the system excitation wt and mea-
surement noise vt are also assumed to be known.

Define Xt−1 = {xi :, i = 1, ...t − 1} to be the ob-
servation sequence made up to time t − 1. The sequential
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Bayesian estimation estimates xt in two steps: a prediction
step and an update step. During the prediction step, the
a posteriori probability of αt based on Xt−1, denoted by
p(αt|Xt−1) is predicted from the following Bayes equation

p(αt|Xt−1) =
∫

p(αt|αt−1)p(αt−1|Xt−1)dαt−1 (3)

where p(αt|αt−1) is the state transition pdf that can be es-
timated from the system model.

Once the observation xt is made, the update step will
update the a posteriori probability of the state vector using
the Bayes rule:

p(αt|Xt) =
p(xt|αt)p(αt|Xt−1)

p(xt|Xt−1)
(4)

2.2. Particle Filter/Bootstrap Filter

Sequential Bayesian estimation has no analytical solution
when the model is non-linear or the noise is non-Gaussian.
Particle filter was proposed to solve the generalized non-
linear or non Gaussian sequential estimation [5] using se-
quential Monte-Carlo simulation.

During each step of the sequential estimation, the parti-
cle filter predicts and updates a set of L discrete samples of
the state vector {αt(i)} using sequential importance sam-
pling (SIS) algorithm and use these particles to approximate
the a posteriori density function p(αt|Xt). As the number
of samples becomes large, these samples effectively provide
an equivalent representation of the required pdf.

3. SEQUENTIAL SOURCE LOCALIZATION AND
TRACKING USING PARTICLE FILTERING IN

DISTRIBUTED SENSOR NETWORK

3.1. System Model

Define
αt = [α(1)

t α
(2)
t ... α

(K)
t ]

as the state vectors of the K sources at time t, where

α
(k)
t = [ρk(t) uk(t) ak(t)]T

is the state vector of the kth acoustic source at time t, ρk(t)
stands for the location of source k at time t, uk(t) is the
velocity of source k at time t and ak(t) is the acceleration
of the source k at time t. For simplicity, we assume a linear
state transition model and source movement is independent
between each other.

ak(t) = w(t) (5)

uk(t) = uk(t − 1) + ak(t)T (6)

ρk(t) = ρk(t − 1) + ut(t − 1)T +
1
2
ak(t)T 2 (7)

where T is the time interval and w(t) is assumed to be
uniformly distributed on [−Wmax Wmax]. Wmax is the
maximum acceleration rate.

3.2. Acoustic Energy Based Source Localization Model

Previously [3], we proposed a maximum likelihood estima-
tion based method to localize acoustic sources. Our method
is based on an acoustic energy attenuation model that has
been validated through real world experiment [3] [6]:

yi(t) = γi

K∑
k=1

sk(t)
‖ ρk(t) − ri ‖2

+ εi(t) (8)

where K is the number of targets (assumed to be known),
yi(t) is the acoustic energy received by the ith sensor at time
t. εi(t) is a perturbation term that summarizes the net effects
of background additive noise and the parameter modeling
error. γi and ri are the gain factor and location of the ith

sensor respectively, sk(t) and ρk(t) are the energy emitted
by the kth source (measured at 1 meter from the source) and
its location during the tth time interval. N is the number of
sensors in the activated region. We have analyzed [3] the
probability distribution of εi(t) and concluded that it can be
modeled well with an i.i.d. Gaussian random variable when
the time window T for averaging the energy is sufficiently
large. The mean and variance of each εi(t) can be empiri-
cally estimated from constant false alarm (CFAR) detector.
Based on this model, we derived a negative log-likelihood
function [3]

�(θt) ∝ ‖xt − Htst‖2 (9)

where θt =
[

ρT
1 (t) · · · ρT

K(t) s1(t) · · · sK(t)
]T

is the vector of unknown parameters. xt is a vector of nor-
malized energy reading yi(t). Ht is a matrix in which each
element is a function of the gain factor γi, unknown source
location ρi(t), noise variance σi(t) and known sensor loca-
tion ri. st is a vector of source energy si(t).

In [3], we have shown that, once the source locations[
ρT

1 (t) · · · ρT
K(t)

]T
is found, the source energy vec-

tor st can be estimated by

st = H†
txt (10)

where H†
t is the pseudo-inverse of Ht

Substituting above equation into the log likelihood func-
tion, we obtain an equivalent log likelihood function that is
proportional to the projection energy, i.e.:

−�(θt) ∝ {xT
t Ptxt} = xT

t UtUT
t xt = ‖UT

t xt‖2 (11)
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where Pt = Ht(HT
t Ht)−1HT

t = Ut UT
t is a projection

matrix, and Ut is the matrix of the left singular vectors of
the Ht matrix. Hence, the likelihood of the measurement
given a particular source location subspace,i.e., given the
ith sample state, can be estimated as:

qi = p(xt|α�
t (i)) = ηexT

t Pt(α�
t (i))xt (12)

Here, the measurement set xt is the normalized energy mea-
surements. Pt is a function of α�

t (i), which is the ith prior
sample for the K source states. η is defined to normalize the
posterior probability, i.e.,

η =
L∑

i=1

exT
t Pt(α�

t (i))xt (13)

To reduce the degeneracy phenomenon of particle filter-
ing, the particles are resampled according to the weights de-
noted as (12). To improve the resampling efficiency, we sort
the sample sequence (the set of particle) by their weights qi

in descending order. Resampling is then performed using
the sorted sample sequence.

3.3. Region Division

To save computation power and communication bandwidth
in wireless sensor network, the localization algorithm is trig-
gered on demand. The entire sensor field is divided into
several smaller overlapping sub-regions. The overlapping
sub-regions is applied because the energy of the sources lo-
cated at the boundary of the region will contribute to the en-
ergy readings of some sensors placed in the neighborhood
region. Since energy decays with the square distance from
the source, 10 meter overlapping boundary is sufficient.

In each sub-region, we define one manager sensor node
and other nodes are defined as detection nodes. Detection
node detects target using CFAR algorithm and calculates
the energy readings individually and sends these informa-
tion to the manager node. The manager node will perform
region fusion detection and localization and tracking algo-
rithm based on the information received from all detection
nodes in the sub-region.

Since the sub-region has smaller size and less sensors,
the communication burden is reduced. The sub-region is
activated if the tracking algorithm announces that the tar-
gets will move into another sub-region. Then, the current
sub-region manager node will send this information to the
manager node of the next sub-region. The corresponding
sub-region is activated. And the current sub-region will go
to sleep.

3.4. Number of Sources

In this proposed method, it is assumed that the number of
acoustic sources is known in advance before the localization

algorithm is applied. Indeed, the proposed method can be
extended to the situation of unknown number of the targets,
using a classical generalized likelihood ratio test (GLRT) or
weighted subspace fitting method [7]. Yet, these two meth-
ods require high computation. They are not suitable for sen-
sor network application where the power supply is limited.
In stead, in sensor network application, we use other meth-
ods to estimate the number of targets. If the sources are
well-separated and sensors are densely deployed over the
sensor field, the number of sources can be determined by
finding the number of peaks of the energy profile. When
several targets are very closely positioned, the number of
energy profile peaks may be unable to indicate the num-
ber of sources correctly. However, since sequential source
localization and tracking algorithm keeps the individual ve-
locity for each target, the closely positioned targets can still
be distinguished by their different velocities. The only un-
resolvable targets are those targets that appear in the sub-
region at the same time and they keep closely all the time
with the same moving direction. Yet, in such situation, it
is still safe to treat these multiple targets as a single target
because physically, they look like a single target.

4. SIMULATION

Simulations have been conducted to compare the perfor-
mance of sequential acoustic energy based source localiza-
tion algorithm using particle filter to the previously pro-
posed ML algorithm. We use (8) to generate the acoustic
energy readings of a 2-D sensor field of size 100 × 100
square meters. The sensors are randomly deployed as Fig.1,
where the whole sensor field is divided into four overlap-
ping smaller subregions. Two targets move from positions
(-50,-50) and (50,−50) to positions (50, 50) and (−50, 50)
respectively with the initial velocity of 20 m/s for each tar-
get. The velocity and acceleration for the two targets are
changed according to our state transition model. The source
energy for target 1 measured at 1 meter distance is set as
s1 = 10000. The source energy for target 2 is set as s2 =
1.2s1. The background noise level is set as σi = 3 for all
sensors in the sensor field. The number of particles is cho-
sen to be 500. Note that for a 100× 100 square meters sen-
sor field, ML estimation using the projection solution and
multi-resolution search for two target location estimation
with an initial grid size of 8 needs a search of 124 = 20736
times. Therefore, using the particle filter dramatically re-
duces the computational complexity. In the simulation, a
random noise with high strength is occasionally produced
at a random position in the sensor region. 500 repeated tri-
als are simulated for each sequential running point. Estima-
tion mean as well as estimation bias and variance are shown
in Figs. 2 and 3. Note that very high noises are randomly
added to simulate the spurious sources, the estimation bias

III - 974

➡ ➡



−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

sub−region I (red)

sub−region IV (green)

sub−region II (blue)

sub−region II (black)

X coordinates

Y
 c

oo
rd

in
at

es

Sensor Deployment and Region Separation

Fig. 1. Sensor Placement for Target Localization Estimation
Simulation
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Fig. 2. Ground Truth and Location Estimation Mean us-
ing Particle Filter and ML estimation, 500 Trials for Each
Simulation Point

and variance are large when ML estimation algorithm is ap-
plied. The figures show that, using particle filter, the effects
of the measurement perturbation caused by the occasional
strong noise are effectively filtered out. The localization
results estimated by the particle filter demonstrates much
higher accuracy than the ML algorithm.

5. CONCLUSION

Sequential acoustic energy based source localization using
particle filter has been presented. The algorithm represents
the required pdf as a set of random samples. Using the prior-
likelihood function and post-likelihood function, the parti-
cle filter propagates and updates the set of random samples,
eliminates the requirement of a comprehensive search over
the whole location space and filters out the spurious loca-
tion. Hence, it is more robust to parameter perturbations
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Fig. 3. Estimation Bias and Variance using Particle Filter
and ML estimation, 500 Trials for Each Simulation Point.
Strong random noises are occasionally added at random po-
sitions in the sensor field to simulate the spurious sources

and more computationally efficient.
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