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ABSTRACT

Target tracking is a highly nonlinear problem that has been
successfully addressed in recent years using sequential Monte
Carlo (SMC) methods, usually called particle filters. In this paper,
we investigate the application of a new class of SMC techniques,
termed cost-reference particle filters (CRPFs), to tracking of a
high-speed maneuvering target. The new CRPF methodology
drops all probabilistic assumptions (i.e., prior probabilities,
knowledge of noise distributions and likelihood functions) that are
common to conventional particle filters and, as a consequence,
leads to practically more robust algorithms. The advantage of
the proposed CRPF over the standard SMC filter in the context
of maneuvering target tracking is illustrated through computer
simulations.

1. INTRODUCTION

In recent years particle filtering has attracted significant attention
in the signal processing community [2, 5] and one of its most
outstanding and successful applications has been target tracking
[3, 6, 4]. The primary reason is the flexibility and accuracy of
particle filters in resolving very difficult nonlinear problems where
the underlying models are represented by dynamic state-space
equations. In these models, one equation describes the stochastic
Markovian evolution of the system states in time, while the
other equation quantifies the observations as (possibly nonlinear)
functions of the unobserved states. All existing particle filtering
methods require a mathematical representation of the dynamics
of the system evolution that includes assumptions of probabilistic
models.

In this paper, we investigate the application to target tracking
of a new class of particle filtering methods introduced in [7]. The
main feature of the new techniques is that they are not based on
any particular probabilistic assumptions regarding the dynamical
model of the target. The statistical reference is substituted by a
user-defined cost function that measures the quality of the state
signal estimates according to the available observations. Hence,
methods within this class are termed Cost Reference Particle
Filters (CRPFs), in contrast to conventional Statistical Reference
Particle Filters (SRPFs).

The CRPF methodology is applied to the problem of tracking
maneuvering targets. Standard tracking algorithms are focused

J. Mı́guez acknowledges the support of Ministerio de Ciencia y
Tecnologı́a of Spain and Xunta de Galicia (project TIC2001-0751-C04-
01). S. Xu, M. F. Bugallo and P. M. Djurić acknowledge the support of the
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on targets that do not change their regimes of movement while
they are tracked. If the targets have several regimes of movement,
i.e., different dynamic models, they can maneuver, which implies
that tracking cannot be successful if it is done with one single
model. By the inclusion of several models [6], coping with
maneuvering becomes possible, but the overall tracking is much
more challenging. From a signal processing point of view, this
is a very interesting problem because we have to estimate the
underlying model at every time instant, as well as its unknown
state.

The fundamentals of the CRPF approach are introduced in
Section 2. In Section 3, we apply the proposed algorithms
to tracking of a maneuvering target. Finally, brief concluding
remarks are made in Section 4.

2. COST REFERENCE PARTICLE FILTERING

2.1. Nonlinear state-space dynamic systems

Many problems in signal processing can be stated in terms of
estimation of an unobserved discrete-time random signal in a
dynamic system of the form

xt = fx(xt−1) + ut state equation (1)

yt = fy(xt) + vt, observation equation (2)

where t = 1, 2, ... denotes discrete time, xt ∈ R
Lx is the signal

of interest, that represents the system state at time t; fx : R
Lx →

Ix ⊆ R
Lx is a (possibly nonlinear) state transition function; ut ∈

R
Lx is the state perturbation or system noise at time t; yt ∈ R

Ly

is the vector of observations collected at time t, which depends on
the system state; fy : R

Lx → Iy ⊆ R
Ly is a (possibly nonlinear)

transformation of the state; and vt ∈ R
Ly is the observation noise

vector at time t, assumed statistically independent from the system
noise ut.

The ultimate aim is the online estimation of the sequence of
system states from the available observations, i.e., we intend to
estimate xt|y1:t, t = 0, 1, 2, ...

2.2. Sequential Algorithm

In order to estimate x0:t from y1:t without the need of any
probabilistic assumption on model (1)-(2), we consider a user-
defined real cost function,

C(x0:t|y1:t, λ) = λC(x0:t−1|y1:t−1) + �C(xt|yt)
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that measures the quality of the state sequence x0:t given the
sequence of observations, y1:t. We assume a recursive structure
where the cost of a sequence up to time t − 1 can be updated
by looking solely at the state and observation vectors at time
t, xt and yt, respectively, which are used to compute the cost
increment, �C(xt|yt). The parameter λ is a forgetting factor that
avoids attributing an excessive weight to old observations when
a long series of data are collected, hence allowing for potential
adaptivity. We also consider a one-step risk function R(xt−1|yt)
that measures the adequacy of the state at time t − 1 given the
new observation, yt. It is convenient to view the risk function,
R(xt−1|yt), as a prediction or estimate of the cost increment,
�C(xt|yt), that can be obtained before xt is actually propagated.
Hence, a natural choice of the risk function is

R(xt−1|yt) = �C (fx(xt−1)|yt) .

The proposed estimation technique proceeds sequentially in
a manner similar to the standard SMC filter [2]. Given a
set of M state trajectories and associated costs up to time t,{
x

(i)
t , C(i)

t

}M

i=1
where C(i)

t = C(x
(i)
0:t|y1:t, λ) and x

(i)
0:t is the

sequence of state vectors leading to the i-th particle x
(i)
t , the grid

of state trajectories is randomly propagated when yt is observed
by taking the following steps:

1. Selection of the most promising trajectories
(resampling). For i = 1, 2, ..., M , let

R(i)
t+1 = λC(i)

t + R(x
(i)
t |yt+1)

π̂
(i)
t+1 ∝ µ(R(i)

t+1)

where µ : R → [0, +∞) is a monotonically decreasing
function and π̂t+1 : {1, ..., M} → [0, 1) is a probability
mass function (pmf). A new particle filter is obtained by
resampling the trajectories {x(i)

0:t}M
i=1 according to the pmf

π̂
(i)
t+1 and we denote it as

{
x̂

(i)
t , Ĉ(i)

t

}M

i=1
.

2. Random propagation. For i = 1, ..., M , let

x
(i)
t+1 ∼ pt+1(x|x̂(i)

t )

C(i)
t+1 = λĈ(i)

t + �C(i)
t+1

where �C(i)
t+1 = �Ct+1(x

(i)
t+1|yt) and pt+1 is a

probability density function (pdf) chosen by the designer,

which must verify E
pt+1(x|x̂(i)

t )
x

(i)
t+1 = fx

(
x̂

(i)
t

)
.

3. Estimation of the state. Let π
(i)
t+1 ∝ µ(C(i)

t+1) for i =
1, . . . , M . The function πt+1 is a pmf and we can obtain
time t + 1 state estimates in several ways, e.g.,

xmean
t+1 =

M∑
i=1

x
(i)
t+1π

(i)
t+1. (3)

The general procedure described above is referred to as the
CRPF. More detailed guidelines that assist the algorithm designer,
as well as sufficient conditions for the asymptotic convergence of
the propagation step, are described in [7].

3. MANEUVERING TARGET TRACKING

In this section we investigate the application of the CRPF method
to the problem of tracking a maneuvering target along a 2-
dimensional space. The target trajectory is characterized by a
constant velocity with short periods of acceleration that correspond
to maneuvers.

The system state consists of the target position, pt =
[px,t, py,t]

� (m), velocity, vt = [vx,t, vy,t]
� (m/s), and

acceleration, at = [ax,t, ay,t]
� (m/s2), in the xy-plane. We

collect these magnitudes in a single state vector of the form xt =
[p�

t ,v�
t ,a�

t ]� ∈ R
6 and represent the dynamic system as

xt = Amxt−1 + ut, m = 1, 2, (4)

yt = h(xt) + wt. (5)

The state equation (4) is allowed to switch between two different
modes of operation, m1 and m2, given by the 6 × 6 matrices

A1 =

⎡
⎣ I2 TsI2 02

02 I2 02

02 02 02

⎤
⎦ ,A2 =

⎡
⎣ I2 TsI2

T2
s
2

I2
02 I2 TsI2
02 02 I2

⎤
⎦ ,

respectively, where Ts is the sampling period, and I2 and 02

represent the 2 × 2 identity matrix and zero matrix. Model m2

is designed to track occasional maneuvering motion. Switching
between models occurs randomly, according to the transition
probability matrix

H =

[
0.95 0.05
0.9 0.1

]
,

where Hij = p(mj|mi) is the probability of the system to
switch from model mi to model mj , i, j = 1, 2, and the initial
model probabilities are set to p(m1) = 0.9 and p(m2) = 0.1.
Finally, the state noise process ut is modeled as a 6 × 1 vector of
independent mixture Gaussian random variables, i.e.,

ui,t ∼ 0.1N (0, 10) + 0.3N (0, 1) + 0.6N (0, 10−3)

uj,t ∼ 0.1N (0, 1) + 0.3N (0, 10−2) + 0.6N (0, 10−4)

uk,t ∼ 0.1N (0, 10−3) + 0.3N (0, 10−6) + 0.6N (0, 10−8)

where i = 1, 2, j = 3, 4 and k = 5, 6.
The observation function h(·) has four components. An

emitter on the moving target transmits a signal with initial power
P0 through a fading channel with attenuation coefficient α. At a
fixed reference point, r = [rx ry]�, the transmitted signal power
is collected, as well as the relative angle between the target and the
reference, the relative velocity and the direction of movement, i.e.,

h1(xt) = 10 log10 (P0/||r − pt||α)

h2(xt) = ∠ (pt, rt)

h3(xt) =
√

v2
x,t + v2

y,t

h4(xt) = ∠ (vt)

where ||z|| =
√

z�z is the norm of z. The observation noise, wt,
is also modeled as a mixture Gaussian vector with independent
components,

w1,t ∼ 0.1N (0, 5) + 0.4N (0, 1) + 0.5N (0, 10−2)

w2,t ∼ 0.1N (0, 1) + 0.4N (0, 0.1) + 0.5N (0, 10−2)

w3,t ∼ 0.1N (0, 1) + 0.4N (0, 10−2) + 0.5N (0, 10−4)

w4,t ∼ 0.1N (0, 1) + 0.4N (0, 0.1) + 0.5N (0, 10−3).
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Fig. 1. CRPF vs. bootstrap filter with M = 300 particles. Sample
trajectory.

We have applied the proposed CRPF to the adaptive estimation
of the target track, x0:t, given the collected observations, y1:t. The
CRPF, as described in subsection 2.2, is specified by

C(x0) = 0

�C(xt|yt) = ‖ yt − h(xt) ‖2

Rm(xt|yt+1) = ‖ yt+1 − h (Amxt)) ‖2, m = 1, 2

µ(C(i)
t ) =

1(
C(i)

t − mink

{
C(k)

t

}
+ δ

)β

where δ = 0.01 and β = 2. The subindex in the risk
function indicates that the two system models, m1 and m2, are
explored in the selection step (note that the transition matrix H
is part of the probabilistic model and, therefore, unknown to the
CRPF). In particular, given M particles at time t, 2M risks are
computed at time t + 1 (one for each model and each particle),
but only M trajectories are stochastically chosen at the selection
step. Thus, both the trajectory to be propagated and the model,
m1 or m2, to be used when generating the new particle are
selected according to their risks. As for the propagation density
(pt+1 in Section 2.2), we have considered both Gaussian and
Uniform multidimensional pdfs (labeled CRPF (Gaussian) and
CRPF (Uniform), respectively) with independent components and
adaptively chosen variances, i.e,

σ2
l,t

(i)
=

t − 1

t
ˆσ2

l,t−1

(i)
+

([
x

(i)
t

]
l
−

[
fx(x̂

(i)
t−1)

]
l

)2

tLx
, (6)

where [z]l denotes the l-th element of vector z, theˆindicates that
the particles are already selected (i.e., resampled) and l = 1, ..., 6.

The initial values are σ2
1:2,0

(i)
= 5 for position, σ2

3:4,0
(i)

= 0.1

for velocity and σ2
5:6,0

(i)
= 10−2 for acceleration. Table 1

summarizes the details of the considered algorithm where the
forgetting factor, λ, is set to 0.95.

We have also considered two resampling schemes: the stan-
dard multinomial resampling [1] and an additional simple resam-
pling technique (labeled as CRPF (local)) where resampling only

Initialization
For i = 1, ..., M

x
(i)
0 ∼ U(Ix0)

C(i)
0 = 0

σ
2,(i)
0 , this variance is not updated until t > 10

Recursive update
For t = 1 to T , for i = 1, ..., M

Rm,t+1 = λC(i)
t +

∥∥∥yt+1 − h(Amx
(i)
t )

∥∥∥2

, m = 1, 2

π̂m,t+1 ∝ µ(Rm,t+1), m = 1, 2
Resample using π̂m,t+1 to yield:{

x̂
(i)
t , Ĉ(i)

t , m(i)
}M

i=1
, m(i) ∈ {1, 2}

x
(i)
t+1 ∼ pt+1(xt+1|x̂(i)

t , m(i))
If t > 10,
For each state component, update the propagation
variance according to eq. (6).

C(i)
t+1 = λĈ(i)

t +
∥∥∥yt+1 − h(x

(i)
t+1)

∥∥∥2

State estimation
π̃

(i)
t = µ(C(i)

t )

π
(i)
t =

π̃
(i)
t∑

M
j=1 π̃

(j)
t

xest
t =

∑M
i=1 x

(i)
t π

(i)
t

Table 1. Sequential CRPF algorithm

occurs among neighbor particles (see [7] for details), which leads
to a straightforward parallelization of the algorithm using an array
of processors connected in a ring configuration.

Finally, for comparison and benchmarking purposes, we have
implemented the popular SMC filter (SMCF) as proposed in [2,
Chapter 23] for maneuvering target tracking. The SMCF has an
algorithmic structure (resampling, importance sampling and state
estimation) very similar to the proposed sequential CRPF family.
We have considered two alternatives in the implementation of
the SMCF: the algorithm obtained when the SMCF uses the true
mixture Gaussian density (labeled as SMCF), and the mismatched
algorithm that models the state noise processes with Gaussian
densities: N (0, 1) for position, N (0, 10−2) for velocity, and
N (0, 10−6) for acceleration (labeled as SMCF (Gaussian)). Table
2 summarizes the details of these algorithms.

Figure 1 shows the system trajectory in a single simulation
run and the estimates corresponding to the SMCF and the CRPF
algorithms. The trajectory starts in an unknown position close to
(0, 0) and evolves for 1 hour, with sampling period Ts = 5 s. It
is apparent that all the algorithms, except the mismatched SMCF,
remain locked to the vehicle position during the whole simulation
interval.

The performance of the tracking algorithms is measured in
terms of the mean absolute deviations obtained by averaging 50
independent simulation trials. The deviation signals are computed
as

ek,t =
1

50

1

2

50∑
j=1

(|xk,t,j − xest
k,t,j | + |xk+1,t,j − xest

k+1,t,j|
)

where k = 1 for position, k = 3 for velocity and k =

III - 970

➡ ➡



0 200 400 600 800
0

500

1000

1500

time

po
si

tio
n

SMCF
SMCF(Gaussian)
CRPF(Gaussian)
CRPF(Gaussian,local)
CRPF(Uniform)
CRPF(Uniform,local)

0 200 400 600 800
0

2

4

6

8

10

time

ve
lo

ci
ty

SMCF
SMCF(Gaussian)
CRPF(Gaussian)
CRPF(Gaussian,local)
CRPF(Uniform)
CRPF(Uniform,local)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

ac
ce

le
ra

tio
n

SMCF
SMCF(Gaussian)
CRPF(Gaussian)
CRPF(Gaussian,local)
CRPF(Uniform)
CRPF(Uniform,local)

Fig. 2. CRPF vs. bootstrap filter with M = 300 particles. Left: Mean absolute deviation of position. Middle: Mean absolute deviation of
velocity. Right: Mean absolute deviation of acceleration.

Initialization
For i = 1, ..., M

x
(i)
0 ∼ N (0, I)

m
(i)
0 ∼ P0

w
(i)
0 = 1

M
Recursive update
For t = 1 to T , for i = 1, ..., M

m̂
(i)
t ∼ p(m|m(i)

t−1)

x̂
(i)
t ∼ p(xt|x(i)

t−1, m̂
(i)
t )

sample κi = k with probability p(yt|x̂(k)
t )

x
(i)
t = x̂

(κi)
t

m
(i)
t = m̂

(κi)
t

w
(i)
t = 1

M
State estimation
For t = 1 to T

xest
t =

∑M
i=1 x

(i)
t w

(i)
t

Table 2. SMCF for the 2-dimensional tracking system.

5 for acceleration; j is the simulation number, hence xt,j =
[x1,t,j , . . . , x6,t,j ]

� is the true state containing the position,
velocity and acceleration at time t in j-th run, and xest

t,j =

[xest
1,t,j , . . . , x

est
6,t,j ]

� is the corresponding estimate obtained with
a particle filter.

Figure 2 shows from left to right: (a) the mean absolute
deviation in the estimated position, (b) the mean absolute deviation
in the estimated velocity, and (c) the mean absolute deviation
in the estimated acceleration. It is clear from the plots that
the performance of the CRPF method is hardly affected by the
choice of propagation density. On the contrary, the use of
the correct statistical information is critical for the performance
of the SMCF. Note that the CRPF algorithm labeled as CRPF
(Gaussian) also draws the state particles from a Gaussian sequence
of densities (the same as the mismatched SMCF), but it attains
a superior performance compared to the SMCF. Also the CRPF
with local resampling shows performance close to the SMCF with
perfect knowledge of the noise statistics. Although it presents
a slight degradation with respect to the CRPF with multinomial
resampling, the feasibility of a simple parallel implementation

makes the local resampling method extremely appealing.

4. CONCLUSIONS

We have investigated the use of a new class of particle filters, called
CRPF [7], for tracking a maneuvering target in 2-dimensional
space. CRPFs allow to drop the probabilistic assumptions required
by conventional particle filters, hence leading to more flexible and
robust algorithms. Computer simulations are provided to illustrate
the performance of the CRPF approach when compared with the
classical SMC filter.
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