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ABSTRACT

We consider the problem of tracking multiple maneuver-
ing targets in the presence of clutter using switching mul-
tiple target motion models. A novel suboptimal fixed-lag
smoothing algorithm is developed by applying the basic in-
teracting multiple model (IMM) approach and joint prob-
abilistic data association (JPDA) technique to a state aug-
mented system. But unlike the standard single scan JPDA
approach, we exploit a multiscan JPDA (Mscan-JPDA) ap-
proach to solve the data association problem. The algo-
rithm is illustrated via a simulation example.

1. INTRODUCTION

We consider the problem of tracking multiple maneuvering
targets in presence of clutter using switching multiple tar-
get motion models. The switching multiple model approach
has been found to be very effective in modeling maneuver-
ing targets [1]-[4],[9]. While tracking multiple targets in the
presence of clutter, one has to solve the problem of mea-
surement origin uncertainty, i.e. how to associate the data
available at the sensor(s) with various targets or clutter
(false measurements). In the Bayesian framework the stan-
dard JPDA algorithm uses only a single (latest) scan data
available at the sensors. To use more information to solve
the data association problem, the idea of using multiple
scans of data (current and past scans) seems to have been
initially proposed by Drummond [8]. Roecker [6] has ex-
tended Drummond’s ideas where he has discussed problem
formulation and solution in some detail. In [6] only non-
maneuvering targets (i.e. one model per target) have been
considered. In this paper, we extend Roecker’s approach to
highly maneuvering targets where we allow multiple kine-
matic motion models per target. A novel suboptimal fixed-
lag smoothing algorithm is developed by applying the basic
IMM approach and multiple scan JPDA technique.

2. MULTISCAN JPDA

A disadvantage of JPDA is that it uses only the data present
in the current scan; in multiscan JPDA, we use multi-
ple scans. A marginal association event θir(k) is said to
be effective at time scan k when the validated measure-
ment y

(i)
k is associated with (i.e. originates from) target r

(r = 0, 1, · · · , N where r = 0 means that the measurement
is caused by clutter). Assuming that there are no unre-
solved measurements, a joint association event Θk is said
to be effective when a set of marginal events {θir(k)} holds
true simultaneously. That is, Θk =

⋂m

i=1
θiri(k) where ri is

the index of the target to which measurement y
(i)
k is asso-

ciated in the event under consideration, (i = 1, 2, · · · , m).
In the multiscan case with a scan window size L (L-scan-
back) and ks = k − L + s, we define multiscan joint events

ΘkL =
⋂L

s=1

⋂m

i=1
θiris(ks) where θiris(ks) is the marginal

association event that at time scan ks, ith the validated

measurement y
(i)
ks

is associated with target ris. In JPDA

This work was supported by the Office of Naval Research
under Grant N00014-01-1-0971.

we use Θk whereas in multiscan JPDA, we exploit ΘkL,
L > 1.

3. PROBLEM FORMULATION

Assume that there are total N targets with the target set
denoted as TN := {1, 2, · · · , N}. Assume that the dynamics
of each target can be modeled as one of the n hypothesized
models. The model set is denoted as Mn := {1, 2, · · · , n}.
For target r (r ∈ TN ), the event that model i is in effect
during the sampling period (tk−1, tk] will be denoted by
M i

k(r). For the j-th model (mode), the state dynamics and
measurements of target r (r ∈ TN ) are modeled as

xk(r) = F j
k−1(r)xk−1(r) + Gj

k−1(r)v
j
k−1(r), (1)

zk(r) = hj(xk(r)) + wj
k(r) (2)

where xk(r) is of dimension nx, zk(r) is of dimension nz,

F j
k−1(r) and Gj

k−1(r) are the system matrices when model
j is in effect over the sampling period (tk−1, tk] for target r
and hj is the nonlinear transformation of xk(r) to zk(r) for
model j. A first-order linearized version of (2) is given by

zk(r) = Hj
k(r)xk(r) + wj

k(r). (3)

The noise processes vj
k−1(r) and wj

k(r) are mutually uncor-
related zero-mean white Gaussian processes with covariance
matrices Qj

k−1 (same for all targets) and Rj
k (same for all

targets), respectively. At the initial time t0, the initial con-
ditions for the system state of target r under each model
j are assumed to be Gaussian random variables with the
known mean x̄j

0(r) and the known covariance P j
0 (r). The

probability of target r in model j at t0, µj
0(r) = P{M j

0 (r)},
is also assumed to be known. The switching from model
M i

k−1(r) to model M j
k(r) is governed by a finite-state sta-

tionary Markov chain (same for all targets) with known

transition probabilities pij = P{M j
k(r)|M i

k−1(r)}. Hence-
forth, tk will be denoted by k.

The measurement set (not yet validated) generated at

time k is denoted as Zk := {z(1)
k , z

(2)
k , · · · , z(m)

k } where m
is the number of measurements generated at time k. Vari-

able z
(i)
k (i = 1, · · · , m) is the ith measurement within the

set. The validated set of measurements at time k will be
denoted by Yk, containing m (≤ m) measurement vectors.
The cumulative set of validated measurements up to time
k is denoted as Zk = {Y1, Y2, · · · , Yk}..

The goal is to find the fixed-lag smoothing state esti-
mate for target r (r ∈ TN ) and some fixed lag d (k ≥ d)
x̂k−d|k(r) = E{xk−d(r)|Zk} and the associated error co-
variance matrix. We will use xk(r)′ to denote the transpose
of xk(r).
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4. IMM/MSCAN-JPDA SMOOTHING

4.1. The State Augmented System
For each target r, augment the state variable xk (r) to x̃k (r)
as

x̃k (r)′ =
[
x̃

(0)
k (r)′ , x̃

(1)
k (r)′ , ... , x̃

(d)
k (r)′

]
(4)

where x̃
(j)
k (r) := xk−j (r). Suppose that for the

augmented system, we obtain the filtered state esti-

mate ̂̃xk|k (r) := E
{
x̃k (r) |Zk

}
It therefore follows that̂̃x(i)

k|k (r) := E
{

x̃
(i)
k (r) |Zk

}
= x̂k−i|k (r). Similar com-

ments apply to the associated covariance. Using the above
definitions and the measurement equation (3), the aug-
mented system can be written as

x̃k (r) = F̃ j
k−1x̃k−1 (r) + G̃j

k−1v
j
k−1 (r) , (5)

zk (r) = H̃j
k (r) x̃k (r) + wj

k (r) (6)

where the matrices F̃ j
k−1, G̃

j
k−1 and H̃j

k (r) for the aug-
mented system are defined in an obvious manner (see [11]).

4.2. Fixed-Lag Smoothing Algorithm
We now extend the single scan IMM/JPDA fixed-lag
smoothing algorithm of [5] to apply to the multiscan case.
As in [6] we will follow a sliding window multiscan approach.
We assume that the scan window size is two. Given state
estimate at time k − 1 based on data up to time k − 1,
in Sec. 4.2.1 we provide first scan steps (using data up to
time k) and in Sec. 4.2.2 we provide the second scan steps
(using data up to time k + 1). Sec. 4.2.1 mimics [5] for the
most part with a few exceptions, hence, it is only briefly dis-
cussed. Assumed available: Given the state estimatễxj

k−1|k−1(r) = E
{
x̃k (r) |M j

k (r) ,Zk−1
}
, the associated co-

variance P̃ j
k−1|k−1(r) and the conditional mode probability

µj
k−1(r) = P [M j

k−1(r)|Zk−1] at time k − 1 for each mode
j ∈ Mn and each target r ∈ TN .

4.2.1. FIRST SCAN STEPS:
Step 1.1. Interaction − mixing of the esti-
mate from the previous time (∀j ∈ Mn, ∀r ∈
TN ): The expressions for the predicted mode probabil-

ity µj−
k (r) := P{M j

k(r)|Zk−1} and the mixing prob-

ability µi|j(r) := P{M i
k−1(r)|M j

k(r),Zk−1} are as in
[5, Sec. 4.2]. Similarly, the expressions for the mixed

estimate ̂̃x0j

k−1|k−1(r) := E{x̃k−1(r)|M j
k(r),Zk−1} and

the associated covariance P̃ 0j
k−1|k−1(r) := E{[x̃k−1(r) −̂̃x0j

k−1|k−1(r)][x̃k−1(r)−̂̃x0j

k−1|k−1(r)]
′|M j

k(r),Zk−1} are as in
[5, Sec. 4.2].

Step 1.2. Predicted state (∀j ∈ Mn, ∀r ∈ TN ):
State prediction:

̂̃xj

k|k−1(r) := E{x̃k(r)|M j
k(r),Zk−1} = F j

k−1
̂̃x0j

k−1|k−1(r).
(7)

State prediction error covariance:

P̃ j
k|k−1(r) = F̃ j

k−1P̃
0j
k−1|k−1(r)F̃

j′
k−1 + G̃j

k−1Q
j
k−1G̃

j′
k−1. (8)

The mode-conditioned predicted measurement of target r,
ẑj

k(r), and the covariance Sj
k(r) of the mode-conditioned

residual ν
j(i)
k (r) := z

(i)
k − ẑj

k(r) are as in [5].

Step 1.3. Measurement validation: This is exactly as
in Step 3.3 of [5]. Denote the volume of validation region

for the whole target set by Vk =
∑N

r=1
Vk(r).

Step 1.4. State estimation with validated measure-
ments (∀j ∈ Mn, ∀r ∈ TN ): From among all the raw

measurements at time k, i.e., Zk := {z(1)
k , z

(2)
k , · · · , z(m(k))

k },
define the set of validated measurement for sensor 1 at time
k as Yk := {y(1)

k , y
(2)
k , · · · , y(m(k))

k } where m(k) is the total

number of validated measurement at time k and y
(i)
k := z

(li)
k

where 1 ≤ l1 < l2 < · · · < lm(k) ≤ m(k) when m(k) �= 0.
Define the validation matrix

Ω = [ωir] i = 1, · · · , m(k), r = 0, · · · , N (9)

where ωir =1 if the measurement i lies in the validation
gate of target r, else it is zero. A joint association event Θk

is represented by the event matrix

Ω̂(Θk) = [ω̂ir(Θk)] i = 1, · · · , m(k), r = 0, · · · , N (10)

where ω̂ir(Θk) = 1 if θir(k) ⊂ Θk, else it is 0. A fea-
sible association event is one where a measurement can
have only one source, i.e.

∑N

r=0
ω̂ir(Θk) = 1 ∀i, and

where at most one measurement can originate from a tar-

get, i.e. δr(Θk) :=
∑m(k)

i=0
ω̂ir(Θk) ≤ 1 for r = 1, · · · , N .

The above joint events Θk are mutually exclusive and ex-
haustive. Define the binary measurement association in-

dicator τi(Θk) :=
∑N

r=1
ω̂ir(Θk), i = 1, · · · , m(k), to in-

dicate whether the validated measurement y
(i)
k is associ-

ated with a target in event Θk. Furthermore, the num-
ber of false (unassociated) measurements in event Θk is

φ(Θk) =
∑m(k)

i=1
[1 − τi(Θk)]. We will limit our discussion

to nonparametric JPDA [2],[5]. One can evaluate the like-

lihood that the target r is in model jr as [5] Λjr
k (r) :=

p[Yk|M jr
k (r),Zk−1] =

∑
Θk

p[Yk|Θk, M jr
k (r),Zk−1]P{Θk}.

(11)
The first term in the last line of (11) can be written as

p[Yk|Θk, M jr
k (r),Zk−1] =

n∑
j1=1

· · ·
n∑

jr−1=1

n∑
jr+1=1

· · ·
n∑

jN =1

p[Yk|Θk, M j1
k (1), · · · , M jN

k (N),Zk−1] × P{M j1
k (1), · · · ,

M
jr−1
k (r−1), M

jr+1
k (r+1), · · · , M jN

k (N)|Θk, M jr
k (r),Zk−1}.

(12)
The second term in the last line of (11) turns out to be [5]

P{Θk} =
φ(Θk)! ε

m(k)!

N∏
s=1

(PD)δs(Θk)(1 − PD)1−δs(Θk) (13)

where PD is the detection probability (assumed to be the
same for all targets) and ε > 0 is a “diffuse” prior (for
nonparametric modeling of clutter) whose exact value is
irrelevant. We assume that the states of the targets (in-
cluding the modes) conditioned on the past observations
are mutually independent. Then the first term in (12) is

p[Yk|Θk, M j1
k (1), · · · , M jN

k (N),Zk−1]

≈
m(k)∏
i=1

p[y
(i)
k |θiri(k), M

jri
k (ri),Zk−1], θiri(k) ⊂ Θk (14)
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where the conditional pdf of the validated measure-

ment y
(i)
k given its origin and target mode, is given by

p[y
(i)
k |θiri(k), M

jri
k (ri),Zk−1] = N (y

(i)
k ; ẑ

jri
k (ri), S

jri
k (ri)) if

τi(Θk) = 1, else it equals 1/Vk where

N (x; y, P ) := |2πP |−1/2exp[−1

2
(x − y)′P−1(x − y)]. (15)

The second term on the right-side of (12) is given by∏N

s=1,s�=r
µjs−

k (s). Moreover, P{Θk|M j
k(r),Zk−1, Yk}

=
1

c
p[Yk|Θk, M j

k(r),Zk−1]P{Θk} =: βj
k(r, Θk)

where c is such that
∑

Θk
βj

k(r, Θk) = 1. The following up-

dates are done for each target r (r ∈ TN ). Calculate Λjr
k (r)

(needed in Step 1.5 later) via (11)-(15). Define the target

and mode-conditioned innovations νj
k(r, Θk) := y

(i)
k − ẑj

k(r)

if θir(k) ⊂ Θk, else 0. Using ̂̃xj

k|k−1(r) and its covariance

P̃ j
k|k−1(r), one computes the state update ̂̃xj

k|k(r) and its

covariance P̃ j
k|k(r) according to the standard PDAF [5].

Step 1.5. Update of mode probabilities (∀j ∈ Mn,

∀r ∈ TN ): µj
k(r) := P [M j

k(r)|Zk]

= P [M j
k(r)|Zk−1]p[Yk|M j

k(r),Zk−1] =
1

c
µj−

k (r)Λj
k(r)

where c is such that
∑n

j=1
µj

k(r) = 1.

Step 1.6. Combination of the mode-conditioned es-
timates (∀r ∈ TN ): The final state estimate update at

time k is given by ̂̃xk|k(r) =
∑n

j=1
̂̃xj

k|k(r)µj
k(r) and its co-

variance P̃k|k(r) is given by

n∑
j=1

{
P̃ j

k|k(r) + [̂̃xj

k|k(r) − ̂̃xk|k(r)][̂̃xj

k|k(r) − ̂̃xk|k(r)]′
}

µj
k(r).

4.2.2. SECOND SCAN STEPS:
Here we update to scan k+1, given data up to time k+1,

with a sliding scan window of size two. Compared to Sec.
4.2.1, here we have an additional conditioning on Θk.
Step 2.1. Interaction − mixing of the estimate from
the previous time (∀j ∈ Mn, ∀r ∈ TN ):

µj
k(r, Θk) := P{M j

k(r)|Zk, Θk} = cβj
k(r, Θk)µj−

k (r). (16)

predicted mode probability:

µj−
k+1(r, Θk) := P{M j

k+1(r)|Z
k, Θk} =

n∑
i=1

pijµ
i
k(r, Θk).

mixing prob. µi|j(r, Θk) := P{M i
k(r)|M j

k+1(r),Zk, Θk}
= pijµ

i
k(r, Θk)/µj−

k+1(r, Θk). (17)

mixed estimate ̂̃x0j

k|k(r, Θk) := E{x̃k(r)|M j
k+1(r),Zk, Θk}

=

n∑
i=1

̂̃xi

k|k(r, Θk)µi|j(r, Θk). (18)

covariance of the mixed estimate P̃ 0j
k|k(r, Θk) =

n∑
i=1

{P̃ i
k|k(r, Θk) + [̂̃xi

k|k(r, Θk) − ̂̃x0j

k|k(r, Θk)]

×[̂̃xi

k|k(r, Θk) − ̂̃x0j

k|k(r, Θk)]′}µi|j(r, Θk). (19)

Step 2.2. Predicted state (∀j ∈ Mn, ∀r ∈
TN ): This step is as Step 1.2 except for an addi-

tional conditioning on Θk. We compute ̂̃xj

k+1|k(r, Θk) :=

E{x̃k+1(r)|M j
k+1(r),Zk, Θk} and the associated covariance

P̃ j
k+1|k(r, Θk). The mode-conditioned predicted measure-

ment of target r, ẑj
k+1(r, Θk), and the covariance of the

residual ν
j(i)
k+1(r, Θk) := z

(i)
k+1 − ẑj

k+1(r, Θk) follow similarly.

Step 2.3. Measurement validation: Let

(jr, Θk) := arg

{
max

j∈Mn, Θk

|Sj
k+1(r, Θk)|

}
. (20)

Then measurement z
(i)
k+1 ( i = 1, 2, · · · , m(k+1)) is validated

if and only if

[z
(i)
k+1− ẑjr

k+1(r, Θk)]′[Sjr
k+1(r, Θk)]−1[z

(i)
k+1− ẑjr

k+1(r, Θk)] < γ

(21)
where γ is an appropriate threshold. The volume of the
validation region with the threshold γ is

Vk+1(r) := cnz γnz/2|Sjr
k+1(r, Θk)|1/2 (22)

where nz is the dimension of the measurement and cnz is
the volume of the unit hypersphere of this dimension. The
volume of validation region for the whole target set is ap-

proximated by Vk+1 =
∑N

r=1
Vk+1(r).

Step 2.4. State estimation with validated measure-
ments (∀j ∈ Mn, ∀r ∈ TN ): This part is quite similar to
Step 1.4 except for the additional conditioning on Θk. The
variables ω̂ir(Θk+1), δr(Θk+1), etc. have the same meaning
as in Step 1.4. One can evaluate the likelihood that the
target r is in model jr as

Λjr
k+1(r) := p[Yk+1|M jr

k+1(r),Z
k] =

∑
Θk

∑
Θk+1

p[Yk+1|Θk, Θk+1, M
jr
k+1(r),Z

k]P{Θk+1}P{Θk|M jr
k+1(r),Z

k}.
(23)

The first term in the last line of (23) can be written in a
manner similar to (12), P{Θk+1} is computed as in (13)
and the third term is given by

P{Θk|M jr
k+1(r),Z

k} = cµjr−
k+1(r, Θk)P{Θk}p[Yk|Θk,Zk−1],

(24)

p[Yk|Θk,Zk−1] =
∑

j

p[Yk|Θk, M j
k(r),Zk−1]µj−

k (r). (25)

The probability of the joint association events Θk+1 and
Θk given that model j is effective for target r from time k
through k + 1 is

P{Θk+1, Θk|M j
k+1(r),Z

k, Yk+1}

=
1

c
p[Yk+1|Θk+1, Θk, M j

k+1(r),Z
k]P{Θk+1}

×P{Θk|M j
k+1(r),Z

k} =: βj
k+1(r, Θk+1, Θk) (26)

where c is such that
∑

Θk+1

∑
Θk

βj
k+1(r, Θk+1, Θk) = 1.
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Figure 1. Trajectories (xy positions) of the three targets.
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Figure 2. Root mean-square error (RMSE) in position using
single scan IMM/JPDAF [5] and the proposed multiscan (win-
dow size 2 scans) approach; smoothing is with lag d = 1.

Using ̂̃xj

k+1|k(r, Θk) and its covariance P̃ j
k+1|k(r, Θk), one

computes the state update ̂̃xj

k+1|k+1(r) as

̂̃xj

k+1|k+1(r) := E{x̃k+1(r)|M j
k+1(r),Z

k, Yk+1}

=
∑
Θk+1

∑
Θk

̂̃xj

k+1|k+1(r, Θk+1, Θk)βj
k+1(r, Θk+1, Θk) (27)

where ̂̃xj

k+1|k+1(r, Θk+1, Θk) follows from a Kalman filter;
we omit the details.

Step 2.5. Update of mode probabilities (∀j ∈ Mn,
∀r ∈ TN ):

µj
k+1(r) := P [M j

k+1(r)|Z
k+1] =

1

c
µj−

k+1(r)Λ
j
k+1(r) (28)

where c is such that
∑n

j=1
µj

k+1(r) = 1 and

µj−
k+1(r) =

∑
Θk

µj−
k+1(r, Θk)P{Θk}p[Yk|Θk,Zk−1]. (29)

Step 2.6. Combination of the mode-conditioned
estimates (∀r ∈ TN ): The final state estimate

update at time k + 1 is given by ̂̃xk+1|k+1(r) =∑n

j=1
̂̃xj

k+1|k+1(r)µ
j
k+1(r) and its covariance is computed

as in Step 1.6.
Finally we obtain the smoothed state estimate for the

IMM/Mscan JPDA algorithm (in addition to filtered state

estimate) as x̂k+1−i|k+1 (r) = ˆ̃x
(i)

k+1|k+1 (r) for i = 0, ....., d.,
and similarly the associated state covariance.

5. SIMULATION EXAMPLE

We consider three targets whose true trajectories are shown
in Fig. 1. The three motion models were selected for each
target, exactly as in [5, Sec. 5]. The initial model probabil-
ities and the mode switching probability matrix for three
targets is also as in [5, Sec. 5]. A single sensor (radar)
is used to obtain the measurements which are range, az-
imuth and elevation angles. The measurement noise wj

k

has covariance matrix R = diag[400m2, 49mrad2, 4mrad2].
The sensor is assumed to be located at the origin of the
coordinate system. The sampling interval was T = 1s
and the probability of detection PD = 0.997. The clut-
ter was assumed to be Poisson distributed with expected
number of λ = 0.1/m rad2. However, a nonparametric
clutter model was used for implementing all the algorithms
for target tracking. The simulation results were obtained
from 50 Monte Carlo runs. Fig. 2 shows the RMSE (root
mean-square error) for the filtered position estimates and
smoothed state estimates for the three targets as a function
of time. It is seen that the multiscan smoothing approach
does provide a significant improvement over the multiscan
filtering and the single scan smoothing approaches.
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