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ABSTRACT

We present a new result characterized by an exact integral
expression for the approximation error between a probabil-
ity density and an integer shift invariant estimate obtained
from its samples. Unlike the Parzen window estimate, this
estimate avoids recomputing the complete probability den-
sity for each new sample: only a few coefficients are re-
quired making it practical for real-time applications.

We also show how to obtain the exact asymptotic behav-
ior of the approximation error when the number of samples
increases and provide the trade-off between the number of
samples and the sampling step size.

1. INTRODUCTION

Probability density estimation is a key issue in many ap-
plications such as pattern recognition, denoising, classifi-
cation, or multimodal image/volume registration [1]. The
problem amounts to finding a good estimate of p(x) given a
set {xi}i=1,...,N of independent realizations—samples—of
the random variable x. A standard non-parametric density
estimate is the point probability density

pδ(x) =
1
N

N∑
i=1

δ(x − xi) (1)

from which it is customary to build the kernel estimator [2]
pest(x) = h−1χ(h−1x) ∗ pδ(x). In this expression, the
Parzen window h−1χ(h−1x) is a positive functionwith nor-
malized integral, and the parameter h controls its size.

In this paper, we study another histogram-like estimate
that is closely related to wavelet probability density estima-
tions [3, 4, 5, 6, 7], and we evaluate the probabilistic expec-
tation of the L2-approximation error between the true den-
sity and this estimate. We obtain an exact expression which
allows us to compute the optimal bin size given the number
of available samples and we give some exact asymptotic re-
sults that are similar to [5, 6].

2. DESCRIPTION

Instead of filtering the point distribution (1) by a Parzen
window, we perform a shift-invariant linear approximation—
e.g., a projection—of pδ onto some function space Vh =
spann∈Z

{ϕh,n(x)} according to the formula

pest(x) = Qhpδ(x) =
∑
n∈Z

〈
pδ, ϕ̃h,n

〉
ϕh,n(x) (2)

where we use the notation fh,n(x) = h−1/2f(h−1x − n).
Here, ϕ̃ and ϕ are functions which may or may not have
good approximation properties—e.g., approximation order,
biorthonormality [8, 9]. Note that the standard histogram is
obtained by choosing ϕ̃ = ϕ = rect.

The expression (2) is particularly interesting from an al-
gorithmic point of view because, unlike the Parzen-window
expression, it is not necessary to recompute the estimator
every time a new sample is received, but only to update the
coefficient c(N)

n =
〈
pδ, ϕ̃h,n

〉
of the expansion (2) accord-

ing to the formula

c(N+1)
n =

N

N + 1
c(N)
n +

1
N + 1

ϕ̃h,n(xN+1).

Note that there are only a finite number of coefficients to up-
date if ϕ̃ has a finite support, which is what we will choose
in practice. This algorithm is particularly well-suited for
real-time processing.

Another interesting property of this estimator is that it
preserves the discrete moments of the probability density
up to degree L − 1

∫
xlpest(x) dx =

1
N

N∑
n=1

xl
i

whenever ϕ̃ has approximation order L and (ϕ, ϕ̃) is bi-
orthonormal—i.e., ˆ̃ϕ(ω) = δn + O

(
(ω − 2nπ)L

)
and the

cross-correlation
〈
ϕ̃h,n, ϕh,n′

〉
= δn−n′ for all integersn, n′.

In particular, it is interesting to choose ϕ and ϕ̃ such that
they span the same space and are biorthonormal: in this con-
figuration, the operatorQh is an orthogonal projection onto
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this space. Moreover, since a probability density should al-
ways sum up to 1, we will always impose that ϕ̃ is at least
of approximation order 1.

3. MAIN RESULTS

Following [8, 9], we observe that if we shift an L2 function
f by τ then the approximation error ‖fτ − Qhfτ‖L2 is h-
periodic. Here, we have denoted by fτ the shifted function
f(· − τ). This incites to define the following shift-averaged
approximation-error measure

η(f)2 =
1
h

∫ h

0

‖fτ −Qhfτ‖2
L2 dτ.

We have shown in [9] that, under slight conditions on f
(Sobolev smoothness> 1/2), on ϕ̃ (bounded Fourier trans-
form) and on ϕ (Riesz basis condition), we have

η(f)2 =
1
2π

∫
|f̂(ω)|2E(hω) dω (3)

where we have defined the Fourier approximation kernel

E(ω) = |1 − ˆ̃ϕ(ω)∗ϕ̂(ω)|2

+ |ˆ̃ϕ(ω)|2
∑
n�=0

|ϕ̂(ω + 2nπ)|2.

The shift-averaged approximation error η(f) is very close
(and even equal) to the true L2 approximation error, the dif-
ference between them being of the order of h s where s is
the Sobolev regularity of the function f . Note that the qual-
ity of the approximation as h → 0 is all the better as the
Fourier approximation kernel cancels with a higher power
at ω = 0.

Because we consider a random estimate pest, it is the
evaluation of E{‖p − Qhpδ‖2

L2} with which we are con-
cerned in this paper, where E{·} denotes the probabilistic
expection of a random variable. Similarly as above, we ob-
serve that changing the origin of x by a multiple of h does
not change this expectation. This is why we will evaluate
instead the shift-averaged expression

η̄(f)2 =
1
h

∫ h

0

E{‖pτ −Qh

(
pδ

)
τ
‖2
L2

}
dτ. (4)

Theorem 1 The expected approximation error of the prob-
ability density p(x) using the estimate (2) is given by

η̄(p)2 =
∫

|p̂(ω)|2E(hω)
dω

2π

+
1
N

∫
(1 − |p̂(ω)|2)S(hω)

dω

2π

(5)

where
S(ω) = |ˆ̃ϕ(ω)|2

∑
n∈Z

|ϕ̂(ω + 2nπ)|2.

Proof: We first observe that E{
p(x) − pδ(x)

}
= 0 which

means that pδ is an unbiased estimate of p. This implies that
E{‖pτ −Qh

(
pδ

)
τ
‖2
L2} = ‖pτ −Qhpτ‖2

L2 + E{‖Qh(pτ −
(pδ)τ )‖2

L2}. This expression has to be further integrated
over τ according to (4).

The first term is exactly the first rhs term of (5) thanks
to (3).

The second term, E{‖Qh(pτ − (pδ)τ )‖2
L2}, can be eval-

uated as follows. It was shown in [8] that

h−1

∫ h

0

‖Qhfτ‖2
L2 dτ =

∫
|f̂(ω)|2S(hω)

dω

2π
.

We apply this result to f = p − pδ and take the expectation
of the result. This involves the computation of E{|p̂(ω) −
p̂δ(ω)|2} = E{|p̂δ(ω)|2} − |p̂(ω)|2 and we have

E{|p̂δ(ω)|2} =
1

N2

N∑
i,i′=1

E
{
e−jω(xi−xi′ )

}

=
(
1 − 1

N

)
|p̂(ω)|2 +

1
N

which finally provides the second rhs term of (5). �
We exemplify in Fig. 1 the relation between the true

apoproximation error and the quantity η̄(p).
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Fig. 1. Case ofN = 1000 zero-average Gaussian data with
variance 1. Comparison between the true approximation er-
ror using cubic splines and sampling step 0.1 ≤ h ≤ 1
(circles) and the prediction using η̄(p).

This result is very interesting because it provides some
good insight into the mixed effect of the quality of the ap-
proximation method and of the number of samples avail-
able. For instance, if we let h tend to zero, the quality
of the approximation improves—smaller sampling step—
which is seen on the first rhs term of (5). On the contrary,
when h → 0, the second rhs term tends to infinity, reflecting
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the fact that pest → pδ which is not square-integrable. Of
course, if we increase N while decreasing h accordingly, it
will be possible to counterbalance this effect.

Theorem 2 Assume that the couple of functions (ϕ̃, ϕ) is
biorthonormal and thatϕ is of approximation orderL. Then,
for small values of h, the expected approximation error of
the estimate (2) can be expressed as

η̄(p)2 = C2
ϕh2L‖p(L)‖2

L2 +
D2

ϕ,ϕ̃

Nh
(6)

where Cϕ =
√∑

n�=0 |ϕ̂(L)(2nπ)|2 is the asymptotic con-
stant for the orthogonal projection [10] and where

D2
ϕ,ϕ̃ =

∑
n∈Z

〈
ϕ, ϕn

〉〈
ϕ̃, ϕ̃n

〉
.

In particular, when (ϕ̃, ϕ) is biorthonormal,Dϕ,ϕ̃ ≥ 1 with
equality only when Qh is the orthogonal projection onto
spann∈Z

{ϕn}.

Proof: As regards the first rhs term of (5), we already know
from [9] that the asymptotic approximation error takes the
form CϕhL‖p(L)‖L2 . The second term can be rewritten as
h−1

∫
S(ω) dω

2π − ∫
S(hω)|p̂(ω)|2 dω

2π . When h → 0, it is
the h−1-term which is dominant and we have that

D2
ϕ,ϕ̃ =

∫
S(ω)

dω

2π

=
1
2π

∫ 2π

0

( ∑
n∈Z

|ˆ̃ϕ(ω + 2nπ)|2
)

×
( ∑

n∈Z

|ϕ̂(ω + 2nπ)|2
)

dω

from which the expression for Dϕ,ϕ̃ follows, after noticing
that

∑
n∈Z

|f̂(ω +2nπ)|2 is the discrete-time Fourier trans-
form of the autocorrelation sequence {〈

f, fn

〉}n∈Z.
When (ϕ̃, ϕ) is biorthonormal,

∑
n∈Z

ˆ̃ϕ(ω+2nπ)∗ϕ̂(ω+
2nπ) = 1 holds true. Using Cauchy-Schwarz inequality, we
find thatDϕ,ϕ̃ = 1 iff ϕ̃ lives in spann∈Z

{ϕn}. �
This theorem gives us the exact—asymptotic—tradeoff

between the bin size (or sampling step) h and the number of
samplesN . We can then find the optimal couple (N, h) that
will yield the smallest asymptotic error.

Corollary 1 Within the framework of Thm. 2, the optimal
couple (N, h) is tied by the relation

h =
(N0

N

) 1
2L+1

(7)

where

N0 =
D2

ϕ,ϕ̃

2L C2
ϕ ‖p(L)‖2

L2

.

When this relation is satisfied, the approximation error η̄(p)
decreases to zero according to

η̄(p) =
√

2L + 1
(
CϕD2L‖p(L)‖L2

) 1
2L+1 ×N− L

2L+1 . (8)

Proof: By differentiation of (6). �
The decrease rate N−L/(2L+1) is of course known in

the literature [4, 7] in the more general case of probability
densities p(x) that belong to Besov spaces. Here, we also
provide exact asymptotic constants. In particular, when ϕ
is a spline of order L—i.e., of degree (L − 1)—and Qh

is the orthogonal projection onto the spline space, we have
that Cϕ = (2π)−L

√
2ζ(2L) where ζ(s) is Riemann’s zeta

function
∑

n≥1 n−s. Now, for L large enough we have that

η̄(p) ≈ ‖p(L)‖
1

2L+1

L2√
2π

N− L
2L+1 .

If instead of choosing the spline of order L, we choose
the OMOMS—the shortest functions of order L having the
smallest asymptotic constant—of same order [11], the asymp-
totic constant is now Cϕ = L!

(2L+1)!
√

2L+1
, and, for large L,

we have that

η̄(p) ≈
√

e ‖p(L)‖
1

2L+1

L2

2
√

L
N− L

2L+1

which has a much smaller constant and thus a better approx-
imation than the spline approximation.

4. CONCLUSION

We have presented a predictive expression for the approx-
imation error between a sampling density estimate and the
true probability density. The accuracy of this expression has
allowed us to quantify the respective influence of the ap-
proximation space, and the influence of a larger number of
samples. In particular, we were able to obtain exact asymp-
totic expressions.
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