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ABSTRACT

We consider the extension of the Whittaker-Shannon inter-
polation reconstruction formula to the case of band-limited
signals observed in the presence of correlated noise. Ob-
serving that in this situation the classical sampling expan-
sion gives inconsistent reconstruction we apply the post-
filtering strategy yielding a smooth correction of the inter-
polation series. We assess the accuracy of the method by
the global Lo error. A large class of dependent noise pro-
cesses is taken into account. This includes short and long
memory errors. Whereas the short memory errors have rel-
atively small influence on the reconstruction accuracy, the
long-memory errors can dramatically slow down the con-
vergence rate. We explain this phenomenom by evaluating
the speed at which the reconstruction error tends to zero.

1. INTRODUCTION

The Whittaker-Shannon (WS) interpolation series plays a
fundamental role in representing signals/images in the dis-
crete domain. In fact, it is commonly recognized as a mile-
stone in signal processing, communication systems, as well
as Fourier analysis [1], [2]. The WS reconstruction theo-
rem says that if an analog signal f(¢) is band-limited with
the bandwidth € (this in the sequel we shall denote as f €
BL(R)) then it can be reconstructed from its discrete values

{f(k7)} by

ft)y=Y_ flkr)sinc(zr=!(t - k7)), (1)

k=—o0

provided that 7 < 7/, where sinc(t) = sin(t)/t. The WS
interpolation series has been extended to a number of cir-
cumstances including multiple dimensions, random signals,
not necessarily band-limited signals, sampling in general-
ized spaces, and reconstruction from irregularly sampled
data. Relatively little attention, however, has been given to
statistical aspects of the sampling theorem, i.e., to the statis-
tical analysis of (1) when only a finite record of noisy data
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is available. This important issue has been mentioned often
in the signal processing literature but no algorithms with es-
tablished convergence properties for a signal reconstruction
from sampled and noisy data were given. The first rigorous
theoretical treatment of this problem has been given in [3]
and next in [4], see also [5] for an overview of various mod-
ifications of (1) to the case of noisy data. In all these contri-
butions the white noise case has been mostly examined. In
[6], however, the extension of the previous theory to short
memory noise processes was also obtained. The problem
addressed in this paper is to provide the further generaliza-
tion to the case of long-range dependent noise processes.
There are many physical and man-made phenomena that ex-
hibit strong long-term correlations [7]. Furthermore, an ag-
gregation of short-memory processes can lead to long-range
dependency effects.

In this paper we consider the following statistical model.
One observes N = 2n + 1 data points

yp = f(kT) + e, |k| <, ()

and wishes to design a reconstruction scheme resembling
(1) such that a certain reduction of the noise present in the
data in obtained. Here {g;} is the zero mean finite vari-
ance noise process. The following assumption on {e;} is
employed throughout the paper.

Assumption 1 The noise {e,} is a weakly stationary stochas-
tic process with Eey, = 0, var(e;) = o2, and cov(ey,&¢) =
r(|k — £]), such that 0* < oo and that for |k| > § > 0 we
have

r([k) = colk[7% 0<a <1 3)
The above assumption implies that the power spectral
density h(w) of {} } has a pole at the origin, i.e., that h(w) ~
cnlw|~(1=%) as w — 0. The processes satisfying (3) is said
to have long-range dependence (LDR) since >, ; |r(k)| =
oco. On the contrary a process for which Y 72 | |r(k)| < oo
exhibits short-range dependence (SRD). An important ex-
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ample of dependent noise is the linear process
ek =Y NZkj, )
j=0

where {Z;} is a sequence of iid random variables with zero
mean and finite variance. Let A\; = cyj P, 7 = 1,2,...,
with p > 0. If p > 1 the process in (4) is SRD, whereas if
1/2 < p < 1 then (4) is a stationary process with LRD. In

fact, it can be shown that the covariance (k) = Y, o AeAess

is of order ¢, k~(2P—1) We refer to [7] for an extensive
overview of the theory and applications of long-range de-
pendent processes. Nevertheless, to the best knowledge of
the author there have been no attempts to study the sampling
problem in the presence of the LRD noise.

In [6] algorithms for signal recovery from samples ob-
served the presence of the linear SRD noise were studied.
In this paper we examine the statistical implications of the
LRD assumption on the sampling problem.

2. RECONSTRUCTION ALGORITHMS FROM
NOISY DATA

A naive reconstruction algorithm would use (1) with { f (k7)}
replaced by {y; } yielding fn(t) = >_ 1<, yrsinc(rm L (t—
kT)). It is easy to verify that the Lo reconstruction error

MISE() = E [ (L0 - f0Fe ©
tends to infinity as n — oo for any 7 < 7/€. This de-
ficiency of f,(t) calls for a certain smooth correction of
fn(t). This can be achieved, see [5], [6] for other alter-
natives, by filtering out in f,, (¢) all frequencies greater than
Q). Hence knowing only that €2 < W and applying an ideal
low-pass filter with bandwidth W we obtain our basic re-
construction formula f,,(t) = fn(t) * sin(Wt)/xt which
can be written in an explicit form as follows.

Fa) =7 > ywelt — k7), 6)

k| <n

where ¢(t) = sin(Wt)/xt is the reproducing kernel for
BL(9).

In the next section we give conditions under which the
MISE( fn) converges to zero as n — oo with a certain
speed. We observe that the rate for the SRD case is not al-
tered by the presence of correlation in the data. This is not
the case for the LRD noise when we may observe a dramatic
reduction of the rate. It is clear that the dependence influ-
ences only the stochastic part of the error, i.e. IVAR(f,) =
E [*° (fa — Efa(t))?dt. The bias term IBIAS(f,) =
[ (E fa(t)— f(t))?dt can be evaluated in the similar way
as in [4], [6]. For the latter we require an assumption on the
decay of f(t) at £oo, i.e., we need.

Assumption 2 Let f € BL(R2) and let for s > 0 we have

[F@)] < egle] =Y, Je > 0.

3. ACCURACY ANALYSIS

Our first result gives a bound for IVAR( f,,) under Assump-
tion 1. For the comparison let us recall, see [6], that TVAR(f,,)
for the SRD noise is given by

R w >
IVAR(fn) < 7{02 + 2; r(OBNT2 ()

Note that for the white noise case we have the equality in
(7) with the right-hand side of (7) replaced by %UQN T2,

Theorem 1 Let {} satisfy Assumption 1. Then for any
n > 1 we have

. w 2 1
IVAR(f,) < Wy, 2ot
™ yiyes
241

{(Wo?cl/aye/ AU NZS5T . (8)

It should be noted that the second term in (8) describes
the additional error due to the presence of the LRD noise
of order «v. Furthermore if 7 = ¢, N~ " for k > (a +
1)/(2c + 1) then lim,, oo IVAR(f,) = 0. To get some
insight into the behavior of (8) let us consider an important
example of the LRD process {x } being the samples of the
fractional Gaussian noise [8]. The bound in (8) was evalu-
ated in this case with W = 7. Figure 1 depicts the bound for
IVAR(f,)/o2N versus the memory parameter 0 < o < 1,
for several values of sampling rate. It is apparent that over-
sampling can reduce the effect of the noise memory.

S

IVAR(fn)/02N

1 e ——
\:
%2 0.4 0.6 0.8 ¢

Fig. 1. IVAR(f,)/02N versus « for the fractional Gaus-
sian noise, 7 = 0.3, 0.5, 0.7, 0.9.

The result obtained in [6] suggest that under Assump-
tion 2 IBIAS(f,) = O((N7)~2¢). This and Theorem 1
yield the following result concerning the rate of conver-
gence.
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Theorem 2 Let Assumptions 1 and 2 be met. Then for the
choice

_ _(2s41)(at1)
% = aN~ 2a¥1i+2s(aF1D)

we have
MISE(f,) = bN ™ mvitsimrn )

The rate of convergence for the SRD noise is O(N 1)

with the sampling rate selected as 7, = alN ™ 24D . This
is clearly a faster rate than the one given in (9). It is also
worth noting that 7¢, ;; is larger than 7* specified in Theo-
rem 2. The rate in (9) improves with s meaning that signals
which more concentrate in the time domain are easier to es-
timate than those which have heavy tails. Figure 2 illustrates
this point by plotting the exponent 2sa/{2a+1+2s(a+1)}
in (9) versus the memory parameter o for s = 1, 3, 10.
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N
//

0.1/
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Fig. 2. The exponent in (9) versus « for s = 1, 3, 10.

Remark 1 Theorem 2 specifies the optimal sampling rate
7*. This choice depends on the noise memory parameter
and the signal tail parameter s. The problem of estimation
« has been extensively examined in the time series literature
[9], [7]. In many cases one can also recover the tail param-
eter. This could lead to an adaptive choice of the sampling
rate.

Remark 2 The results of this paper can be generalized to
the case when the correlation function depends on T, i.e.,
cov(ersenre) = - (10]) and v (|€]) = (|£)o(r) for r(|€]
satisfying Assumption I and lim,_,o p(T) = ¢, some con-
stant c. If, however, - (|k|) = p(7|k|) with p(t) = c,|t|~%,
o > 0, then we obtain that IVAR(f,) = O(NT) and con-

sequently no convergence of the error to zero is possible.

4. CONCLUDING REMARKS

In this paper a thorough analysis of the post-filtering sig-
nal reconstruction method calculated from sampled data ob-
served in the presence of the long-memory noise was given.

The obtained result, see (9), reveals that the rate of conver-
gence can be arbitrary slow. To alleviate this problem one
can apply higher oversampling rate. Yet another promising
alternative would be to use random sampling, i.e., replace
(2) by yr. = f(7) + €k, where {7} is a sequence of N
random time points over a certain interval centered at the
origin. Then the estimate in (6) would take the following
form

Fn®) =" (ta) = T0e—1) Wt — 7))
[k[<n

where 7(_,,_1) < T(_) < -+ < T(y) is the ordered version
of {7} and yp;)’s are the observations paired with 7(4)’s.
The reason that this estimate can have an improved perfor-
mance is due to the fact that the dependence between ran-
domly mixed data is smaller than between consecutive ob-
servations as this is the case in the deterministic sampling.
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