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ABSTRACT

We consider the extension of the Whittaker-Shannon inter-
polation reconstruction formula to the case of band-limited
signals observed in the presence of correlated noise. Ob-
serving that in this situation the classical sampling expan-
sion gives inconsistent reconstruction we apply the post-
filtering strategy yielding a smooth correction of the inter-
polation series. We assess the accuracy of the method by
the global L2 error. A large class of dependent noise pro-
cesses is taken into account. This includes short and long
memory errors. Whereas the short memory errors have rel-
atively small influence on the reconstruction accuracy, the
long-memory errors can dramatically slow down the con-
vergence rate. We explain this phenomenom by evaluating
the speed at which the reconstruction error tends to zero.

1. INTRODUCTION

The Whittaker-Shannon (WS) interpolation series plays a
fundamental role in representing signals/images in the dis-
crete domain. In fact, it is commonly recognized as a mile-
stone in signal processing, communication systems, as well
as Fourier analysis [1], [2]. The WS reconstruction theo-
rem says that if an analog signal f(t) is band-limited with
the bandwidth Ω (this in the sequel we shall denote as f ∈
BL(Ω)) then it can be reconstructed from its discrete values
{f(kτ)} by

f(t) =
∞∑

k=−∞
f(kτ) sinc(πτ−1(t − kτ)), (1)

provided that τ ≤ π/Ω, where sinc(t) = sin(t)/t. The WS
interpolation series has been extended to a number of cir-
cumstances including multiple dimensions, random signals,
not necessarily band-limited signals, sampling in general-
ized spaces, and reconstruction from irregularly sampled
data. Relatively little attention, however, has been given to
statistical aspects of the sampling theorem, i.e., to the statis-
tical analysis of (1) when only a finite record of noisy data

is available. This important issue has been mentioned often
in the signal processing literature but no algorithms with es-
tablished convergence properties for a signal reconstruction
from sampled and noisy data were given. The first rigorous
theoretical treatment of this problem has been given in [3]
and next in [4], see also [5] for an overview of various mod-
ifications of (1) to the case of noisy data. In all these contri-
butions the white noise case has been mostly examined. In
[6], however, the extension of the previous theory to short
memory noise processes was also obtained. The problem
addressed in this paper is to provide the further generaliza-
tion to the case of long-range dependent noise processes.
There are many physical and man-made phenomena that ex-
hibit strong long-term correlations [7]. Furthermore, an ag-
gregation of short-memory processes can lead to long-range
dependency effects.

In this paper we consider the following statistical model.
One observes N = 2n + 1 data points

yk = f(kτ) + εk, |k| ≤ n, (2)

and wishes to design a reconstruction scheme resembling
(1) such that a certain reduction of the noise present in the
data in obtained. Here {εk} is the zero mean finite vari-
ance noise process. The following assumption on {εk} is
employed throughout the paper.

Assumption 1 The noise {εk} is a weakly stationary stochas-
tic process with Eεk = 0, var(εt) = σ2, and cov(εk, ε�) =
r(|k − �|), such that σ2 < ∞ and that for |k| ≥ δ > 0 we
have

r(|k|) = cr|k|−α, 0 < α ≤ 1. (3)

The above assumption implies that the power spectral
density h(ω) of {εk} has a pole at the origin, i.e., that h(ω) ≈
ch|ω|−(1−α) as ω → 0. The processes satisfying (3) is said
to have long-range dependence (LDR) since

∑∞
k=1 |r(k)| =

∞. On the contrary a process for which
∑∞

k=1 |r(k)| < ∞
exhibits short-range dependence (SRD). An important ex-
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ample of dependent noise is the linear process

εk =
∞∑

j=0

λjZk−j , (4)

where {Zj} is a sequence of iid random variables with zero
mean and finite variance. Let λj = cλj−p, j = 1, 2, . . .,
with p > 0. If p > 1 the process in (4) is SRD, whereas if
1/2 < p < 1 then (4) is a stationary process with LRD. In
fact, it can be shown that the covariance r(k) =

∑∞
�=0 λ�λ�+k

is of order crk
−(2p−1). We refer to [7] for an extensive

overview of the theory and applications of long-range de-
pendent processes. Nevertheless, to the best knowledge of
the author there have been no attempts to study the sampling
problem in the presence of the LRD noise.

In [6] algorithms for signal recovery from samples ob-
served the presence of the linear SRD noise were studied.
In this paper we examine the statistical implications of the
LRD assumption on the sampling problem.

2. RECONSTRUCTION ALGORITHMS FROM

A naive reconstruction algorithm would use (1) with {f(kτ)}
replaced by {yk} yielding fn(t) =

∑
|k|≤n yksinc(πτ−1(t−

kτ)). It is easy to verify that the L2 reconstruction error

MISE(fn) = E

∫ ∞

−∞
(fn(t) − f(t))2dt (5)

tends to infinity as n → ∞ for any τ ≤ π/Ω. This de-
ficiency of fn(t) calls for a certain smooth correction of
fn(t). This can be achieved, see [5], [6] for other alter-
natives, by filtering out in fn(t) all frequencies greater than
Ω. Hence knowing only that Ω ≤ W and applying an ideal
low-pass filter with bandwidth W we obtain our basic re-
construction formula f̂n(t) = fn(t) ∗ sin(Wt)/πt which
can be written in an explicit form as follows.

f̂n(t) = τ
∑
|k|≤n

ykϕ(t − kτ), (6)

where ϕ(t) = sin(Wt)/πt is the reproducing kernel for
BL(Ω).

In the next section we give conditions under which the
MISE(f̂n) converges to zero as n → ∞ with a certain
speed. We observe that the rate for the SRD case is not al-
tered by the presence of correlation in the data. This is not
the case for the LRD noise when we may observe a dramatic
reduction of the rate.
ences only the stochastic part of the error, i.e. IVAR(f̂n) =
E

∫ ∞
−∞(fn − Efn(t))2dt. The bias term IBIAS(f̂n) =∫ ∞

−∞(Efn(t)−f(t))2dt can be evaluated in the similar way
as in [4], [6]. For the latter we require an assumption on the
decay of f(t) at ±∞, i.e., we need.

Assumption 2 Let f ∈ BL(Ω) and let for s ≥ 0 we have

|f(t)| ≤ cf |t|−(s+1), |t| > 0.

3. ACCURACY ANALYSIS

Our first result gives a bound for IVAR(f̂n) under Assump-
tion 1. For the comparison let us recall, see [6], that IVAR(f̂n)
for the SRD noise is given by

IVAR(f̂n) ≤ W

π
{σ2 + 2

∞∑
�=1

|r(�)|}Nτ2. (7)

Note that for the white noise case we have the equality in
(7) with the right-hand side of (7) replaced by W

π σ2Nτ2.

Theorem 1 Let {εk} satisfy Assumption 1. Then for any
n ≥ 1 we have

IVAR(f̂n) ≤ W

π
σ2Nτ2 +

2(α + 1)
πα

{Wσ2c1/α
r }α/(α+1)Nτ

2α+1
α+1 . (8)

It should be noted that the second term in (8) describes
the additional error due to the presence of the LRD noise
of order α. Furthermore if τ = cτN−κ for κ > (α +
1)/(2α + 1) then limn→∞ IVAR(f̂n) = 0. To get some
insight into the behavior of (8) let us consider an important
example of the LRD process {εk} being the samples of the
fractional Gaussian noise [8]. The bound in (8) was evalu-
ated in this case with W = π. Figure 1 depicts the bound for
IVAR(f̂n)/σ2N versus the memory parameter 0 < α ≤ 1,
for several values of sampling rate. It is apparent that over-
sampling can reduce the effect of the noise memory.
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Fig. 1. IVAR(f̂n)/σ2N versus α for the fractional Gaus-
sian noise, τ = 0.3, 0.5, 0.7, 0.9.

The result obtained in [6] suggest that under Assump-
tion 2 IBIAS(f̂n) = O((Nτ)−2s). This and Theorem 1
yield the following result concerning the rate of conver-
gence.
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It is clear that the dependence influ-
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Theorem 2 Let Assumptions 1 and 2 be met. Then for the
choice

τ∗ = aN− (2s+1)(α+1)
2α+1+2s(α+1)

we have

MISE(f̂n) = bN− 2sα
2α+1+2s(α+1) . (9)

The rate of convergence for the SRD noise is O(N− s
s+1 )

with the sampling rate selected as τ∗
SRD = aN− 2s+1

2(s+1) . This
is clearly a faster rate than the one given in (9). It is also
worth noting that τ∗

SRD is larger than τ∗ specified in Theo-
rem 2. The rate in (9) improves with s meaning that signals
which more concentrate in the time domain are easier to es-
timate than those which have heavy tails. Figure 2 illustrates
this point by plotting the exponent 2sα/{2α+1+2s(α+1)}
in (9) versus the memory parameter α for s = 1, 3, 10.
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Fig. 2. The exponent in (9) versus α for s = 1, 3, 10.

Remark 1 Theorem 2 specifies the optimal sampling rate
τ∗. This choice depends on the noise memory parameter α
and the signal tail parameter s. The problem of estimation
α has been extensively examined in the time series literature
[9], [7]. In many cases one can also recover the tail param-
eter. This could lead to an adaptive choice of the sampling
rate.

Remark 2 The results of this paper can be generalized to
the case when the correlation function depends on τ , i.e.,
cov(εk, εk+�) = rτ (|�|) and rτ (|�|) = r(|�|)ρ(τ) for r(|�|)
satisfying Assumption 1 and limτ→0 ρ(τ) = c, some con-
stant c. If, however, rτ (|k|) = ρ(τ |k|) with ρ(t) = cρ|t|−α,
α > 0, then we obtain that IVAR(f̂n) = O(Nτ) and con-
sequently no convergence of the error to zero is possible.

4. CONCLUDING REMARKS

In this paper a thorough analysis of the post-filtering sig-
nal reconstruction method calculated from sampled data ob-
served in the presence of the long-memory noise was given.

The obtained result, see (9), reveals that the rate of conver-
gence can be arbitrary slow. To alleviate this problem one
can apply higher oversampling rate. Yet another promising
alternative would be to use random sampling, i.e., replace
(2) by yk = f(τk) + εk, where {τk} is a sequence of N
random time points over a certain interval centered at the
origin. Then the estimate in (6) would take the following
form

f̂n(t) =
∑
|k|≤n

(τ(k) − τ(k−1))y[k]ϕ(t − τ(k)),

where τ(−n−1) < τ(−n) < · · · < τ(n) is the ordered version
of {τk} and y[k]’s are the observations paired with τ(k)’s.
The reason that this estimate can have an improved perfor-
mance is due to the fact that the dependence between ran-
domly mixed data is smaller than between consecutive ob-
servations as this is the case in the deterministic sampling.
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