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ABSTRACT

It is shown that Sigma-Delta (Σ∆) algorithms can be used
effectively to quantize finite frame expansions for Rd. Er-

ror estimates for various quantized frame expansions are de-

rived, and in particular, it is shown that Σ∆ quantizers out-
perform the standard PCM schemes.

1. INTRODUCTION

In signal processing, one of the primary goals is to obtain

a digital representation of the signal of interest that is suit-

able for storage, transmission, and recovery. In general, the

first step towards this objective is finding an atomic decom-

position of the signal. More precisely, one expands a given

signal x over a dictionary {en}n∈Λ such that

x =
∑
n∈Λ

xnen, (1)

where xn are real or complex numbers. Such an expan-

sion is said to be redundant if the choice of xn in (1) is not

unique.

Although (1) is a discrete representation, it is certainly

not “digital” since the coefficient sequence {xn}n∈Λ is real

or complex valued. Therefore, a second step is needed to

reduce the continuous range of this sequence to a discrete,

preferably finite, set. This second step is called quantiza-
tion.

2. FRAME THEORETIC BACKGROUND

In various applications it is convenient to assume that the

signals of interest are elements of a Hilbert space, e.g., band-

limited functions, L2(Rd), or Rd. In this case, one can

consider more structured dictionaries, such as frames.

Definition 1 A collection F = {en}n∈Λ in a Hilbert space
H is a frame if

∀x ∈ H, A‖x‖2 ≤
∑

|〈x, en〉|2 ≤ B‖x‖2,

where the frame bounds 0 < A ≤ B < ∞ are fixed con-
stants.

The frame is tight ifA = B. An important remark is that the
frame boundA of a uniform or normalized tight frame, i.e.,
a tight framewith ‖en‖ = 1 for all n, “measures” the redun-
dancy of the system. If A = 1 then a uniform tight frame
{en} is an orthonormal basis and there is no redundancy.
The larger the frame bound A > 1 is, the more redundant a
uniform tight frame is.

Definition 2 Let {en}n∈Λ be a frame for a Hilbert space
H with frame boundsA and B. The analysis operator

F : H → l2(Λ)

is defined by (Fx)k = 〈x, ek〉. The operator S = F ∗F is
called the frame operator, and it satisfies

AI ≤ S ≤ BI,

where I is the identity operator on H . The inverse of S,
S−1, is called the dual frame operator, and it satisfies

B−1I ≤ S−1 ≤ A−1I.

The following theorem illustrates why frames can be useful

in signal processing.

Theorem 3 Let {en}n∈Λ be a frame forH with frame bounds
A and B, and let S be the corresponding frame operator.
Then {S−1en}n∈Λ is a frame forH with frame boundsB−1

and A−1. Further, for all x ∈ H

x =
∑
n∈Λ

〈x, en〉(S−1en) (2)

=
∑
n∈Λ

〈x, (S−1en)〉en (3)

The atomic decompositions in (2) and (3) are the first

step towards a digital representation. If the frame is tight
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with frame boundA, then both frame expansions are equiv-
alent and we have

∀x ∈ H, x = A−1
∑
n∈Λ

〈x, en〉en. (4)

For the important case of finite uniform frames for Rd

and Cd, the frame constant A is N/d, where N is the car-
dinality of the frame [1], [2], [3], [4].

3. QUANTIZATION

In this section we shall discuss the quantization of tight

frame expansions, (4). An intuitive quantization technique

is the 2 	1/δ
-level PCM quantizer with step size δ, given
by replacingxn = 〈x, en〉with qn = δ(	xn/δ
 − 1/2). One
can show that if |xn| < 1 for all n then sup |xn−qn| ≤ δ/2
for all n.
If {en}N

n=1 is a uniform tight frame for R
d, and ‖ · ‖

denotes the Euclidean norm in Rd, then the approximation

error satisfies

‖x − A−1
N∑

n=1

qnen‖ ≤
(

d

2

)
δ, (5)

where A = N/d. This error estimate does not utilize the
redundancy of the frame. (5) can be improved by making

the assumption that the quantization error sequence {ηn} =
{xn−qn} is a signal independent sequence of i.i.d. random
variables with mean 0 and variance δ2/12. This is Bennett’s
white noise assumption [5]. Here, the sequence {ηn} is ran-
domized by assuming that it is computed for a random sig-

nal x ∈ H with a smooth probability distribution. In this
case, one can show that the mean square (approximation)

error (MSE) satisfies

MSE = E‖x − A−1
N∑

n=1

qnen‖2 ≤ dδ2

12A
, (6)

where A = N/d, and E is the expectation with respect to
the associated probability distribution, cf., [3]. Note that (6)

is unsatisfactory for the following reasons:

(a) The white noise assumption does not hold in some

elementary settings. For example, consider the tight

frame {en = (cos(n(2π/N)), sin(n(2π/N))}N
n=1 for

R2 with even N . Clearly, en = −en+N/2 for any n,
and this violates Bennett’s assumption. Thus, the pre-

dicted MSE will not be attained in this case.

(b) The MSE bound (6) only gives information about the

average quantizer performance.

(c) As one increases the redundancy of the expansion,

i.e., as the frame bound A increases, the MSE given
in (6) decreases only as 1/A, i.e., the redundancy of
the expansion is not utilized very efficiently.

Sigma-Delta (Σ∆) quantizers are widely implemented
to quantize oversampled bandlimited functions [6, 7]. When

used to quantize oversampled bandlimited functions, first-

order 1-bit Σ∆ quantizers yield approximations where the
pointwise approximation error is bounded by C1A

−1 [7] or

better [8], and the MSE behaves like A−3 [9], where A is
the frame bound of the corresponding tight frame for the

space of bandlimited functions.

4. FIRST-ORDER Σ∆ QUANTIZERS

In this section, we introduce the standard first order Σ∆
scheme with the aim of using it to quantize finite frame ex-

pansions inRd.

Given themidrise quantization alphabetAδ
K := {(−K+

1/2)δ, (−K+3/2)δ, · · · , (−1/2)δ, (1/2)δ, · · · , (K−1/2)δ},
we define

Q(u) := arg minq∈Aδ
K
|u − q| (7)

For simplicity, we only considermidrise quantizers, although

our results are also valid more generally, e.g., for midtread
quantization alphabets.

Definition 4 Given a sequence of frame coefficients {xn}N
n=1,

a first-orderΣ∆ quantizer produces the quantized sequence
{qn} by running the iteration

un = un−1 + xn − qn, qn = Q(un−1 + xn), (8)

where {un} is an auxiliary sequence of state variables, and
Q is the 2K-level midrise uniform scalar quantizer defined
by (7).

We say that a first-order Σ∆ quantizer is a 2K-level first-
orderΣ∆ quantizer with step size δ if it is defined by means
of (8), whereQ is as in (7).
The following proposition asserts that the first-orderΣ∆

quantizer is stable.

Proposition 5 Let K be a positive integer, let δ > 0, and
consider the Σ∆ system defined by (8) and (7). If |xn| ≤
(K − 1/2)δ for all n and |u0| ≤ δ/2, then |un| ≤ δ/2 for
all n.

5. Σ∆ QUANTIZATION OF FRAMES FORR2

Theorem 6 LetK be a positive integer, let δ > 0, and con-
sider {en = (e1

n, e2
n)}N

n=1 a uniform tight frame forR
2, or-

dered so that arctan(e2
k/e1

k) ≤ arctan(e2
l /e1

l ) if k ≤ l. Let
x ∈ R2 satisfy ‖x‖ ≤ (K − 1/2)δ, and suppose {qn}N

n=1

is produced by a 2K-level first-order Σ∆ quantizer with
step size δ using the frame coefficients {xn = 〈x, en〉} as
the input. Then, the approximation x̃ := 2N−1

∑N
n=1 qnen

satisfies
‖x − x̃‖ ≤ N−1(2π + 2)δ. (9)
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Corollary 7 Given the hypotheses of Theorem 6, the esti-
mate in (9) can be replaced by

(i) ‖x− x̃‖ ≤ N−1(2π+1)δ if we choose u0 = 0 in (8),
and by

(ii) ‖x − x̃‖ ≤ 2πN−1δ when N is even if we have
a midrise quantizer, if we choose u0 = 0, and if∑N

n=1 en = 0.

The above results can be generalized to the case of uni-

form non-tight frames. Let {en}N
n=1 be a uniform frame

for R2 with frame bounds A and B, and with frame op-
erator S. Let xn := 〈x, en〉 and suppose qn is obtained

by quantizing xn using a 2K-level first-order Σ∆ quantizer
with step size δ. Define x̃ :=

∑N
n=1 qn(S−1en). Note that

B−1 ≤ ‖S−1‖ ≤ A−1.

Proposition 8 With the setup of the previous paragraph,
the pointwise approximation error ‖x − x̃‖ satisfies the in-
equality

‖x − x̃‖ ≤ ‖S−1‖(2π + 2)
δ

2
. (10)

Moreover, we can replace (2π + 2) in (10) with (2π + 1)
and 2π if the conditions listed in Corollary 7 (i) and (ii),
respectively, are satisfied.

A simple comparison of the error bounds obtained in

this section with the MSE error bounds for PCM quantiz-

ers, which were discussed in Section 3, shows that the MSE

corresponding to first-order Σ∆ quantizers is smaller than
theMSE corresponding to PCM quantizers for uniform tight

frames ofR2 with redundancyA if

• A > 1.5(2π + 1)2 ≈ 80 for any uniform tight frame
for R2, as long as the frame elements are ordered as

described in Theorem 6 with the additional condition

that u0 is chosen to be 0, or

• A > 1.5(2π)2 ≈ 59 if the uniform tight frame forR2

is as described in Corollary 7 (ii).

Numerical experiments indicate that smaller redundandcy

than above may still be sufficient for first order Σ∆ quanti-
zation to outperformPCM. Figure 1 shows theMSE achieved

by 2K-level PCM quantizers and 2K-level first-order Σ∆
quantizers with step size δ = 1/K for several values of K
for uniform tight frames for R2 obtained by the N th roots
of unity. The plots suggest that if the frame bound is larger

than approximately 10, the first-orderΣ∆ quantizer outper-
forms PCM.

Finally, we want to note that the upper-bound on the

MSE for first-order Σ∆ quantizers is the asymptotic lower
bound for the MSE for PCM quantizers with step size δ,
given in [3].
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Fig. 1. Comparison of the MSE for 2K-level PCM quan-
tizers and 2K-level first-order Σ∆ quantizers with step size
δ = 1/K . The figures plot MSE versus the frame bound,A.
Frame expansions of 100 randomly selected points in R2

for frames obtained by the N th roots of unity were quan-
tized. In the figure legend PCM and SD correspond to the

MSE for PCM and the MSE for first-orderΣ∆ obtained ex-
perimentally, respectively. In the legend, the bound on the

MSE for PCM, computed with white noise assumption, is

denoted by WNA. Finally, SDWN in the legend stands for

the MSE bound for Σ∆ that we would obtain if the approx-
imation error was uniformly distributed between 0 and the

upper bound of Corollary 7(i).
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Fig. 2. The histograms of Example 9.

6. QUANTIZATION OF UNIFORM FRAME
EXPANSIONS IN HIGHER DIMENSIONS

In this section we show how to generalize the two dimen-

sional results of the previous section to higher dimensions.

We start by noting that Σ∆ schemes are defined in an itera-
tive manner, see (8). Therefore, given a frame {en}N

n=1 and

x ∈ R2, the resulting quantization of the frame coefficients

of x, as well as the approximation error bounds in Section 5
depend heavily on the order in which the frame coefficients

are quantized. In Theorem 6, we imposed a natural order on

the frame coefficients to obtain the estimate given by (9).

Changing this order has a drastic affect on the approxima-

tion error.

Example 9 Consider the uniform tight frame for R2 given
by {en}7

n=1, where en := (cos(n2π/7), sin(n2π/7)). We
randomly choose 10,000 points in the unit ball ofR2. First,
we quantize the frame coefficients of each point using (8)
in their natural order, by setting xn = 〈x, en〉 in (8). Fig-
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ure 2 (a) shows the histogram of the corresponding approx-
imation errors. Next, we quantize the frame coefficients
of the same 10,000 points, only this time after reordering
the frame coefficients as x1, x4, x7, x3, x6, x2, x5. Figure 2
(b) shows the histogram of the corresponding approxima-
tion errors in this case. Clearly, the average approximation
error for the new ordering is significantly larger than the
average approximation error associated with the original
ordering. This example and the earlier discussion motivate
the following notation.

Definition 10 Let F = {en}N
n=1 be a finite frame for R

d,
and let p be a permutation of {1, 2, . . . , N}. We define the
(first-order) variation of the frame F with respect to p as

σ(F, p) :=
N−1∑
n=1

‖ep(n) − ep(n+1)‖. (11)

Now, we can restate Theorem 6 in a more general way.

Theorem 11 Let F = {en}N
n=1 be a uniform tight frame

for Rd, and let p be as above. Suppose thatK is a positive
integer and δ > 0. Consider qn that are produced by the
first orderΣ∆ quantizer defined by (8) and (7) using the se-
quence {〈x, ep(n)〉}N

n=1 as the input. Then the approxima-
tion x̃ := dN−1

∑N
n=1 qnep(n) = dN−1

∑N
n=1 qp−1(n)en

satisfies

‖x − x̃‖ ≤ d

N
(σ(F, p) + 2)

δ

2
. (12)

Theorem 11 shows that the performance of the first-

order Σ∆ algorithm in quantizing a given frame expansion
inRd depends on the variation of the frame with respect to

the order in which the coefficients are quantized.

The harmonic frames forRd [4] provide an infinite fam-

ily of uniform tight frames with arbitrarily high redundancy

for which we can derive uniform bounds on the frame vari-

ation.

Theorem 12 Let FN be a harmonic frame for Rd and let
p be the identity map on {1, 2, . . . , N}. Then σ(FN , p) ≤
πd(d + 1).

Theorems 11 and 12 show that first-orderΣ∆ schemes have
approximation error which is O(N−1) as N → ∞ when
used to quantize harmonic frame expansions for Rd. N is
the number of frame elements. Thus the MSE correspond-

ing to the first-order Σ∆ quantization of harmonic frames
forRd behaves likeN−2. This is the theoretical asymptotic

lower bound for the MSE for PCM given in [3]. Further-

more, the upper bound on the MSE for the first-order Σ∆
quantization performs better than the MSE for PCM com-

puted under Bennett’s white noise assumption if N is suffi-
ciently large.

See [10] for further results on finite frameΣ∆ quantiza-
tion, as well as proofs of the results presented in this paper.
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