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ABSTRACT

Irregular Pulse Repetition Time (PRT) implies irregularly
sampled signals in pulse radar. Irregular PRT is intentional
because it improves the radar anti-jamming performance.
This radar specific case involves not only standard analysis
from irregular samples but also demands additional
research. The frequencies above the sampling frequency
should be sought, and unwanted signals (so-called clutter)
should be suppressed. The state of art, especially
applicability of discrete Fourier Transform (DFT) and
frame decomposition, is investigated. Solving the desired
frequencies and filtering the clutter are treated as most
serious of all radar specific problems.

1. INTRODUCTION

Radar is an electronic system used for detection, location
and classification of objects. It operates by transmitting a
particular type of waveform, and detects the nature of the
echo signal. In this introduction, only pulse radar principles
sufficient for understanding the sampling problem are
summarized. This includes the existing regular sampling,
and an introduction to the irregular sampling. For further
details about numerous theoretical and practical aspects of
radar principles, the interested reader is referred to the
excellent radar texts such as e.g. [7] and [5].

Pulse radar transmits pulses and receives the pulses
reflected from an object (Fig.1). The received pulses are
delayed in time by TR = 2R/c, where c and R are the speed
of light and distance of the object from the radar,
respectively. Accordingly, the pulses change also in phase
by φR = ωcTR, where ωc is the radar carrier frequency. This
implies also frequency shift, if R changes in time, i.e. if

, where vD is radial (or Doppler) velocity
of the object. 

In a typical radar application, the object motion is assumed
to be uniform, i.e. R = vD t + R0, where R0 is an initial
distance. The unknown parameters to be estimated are R0
and vD from the time delay TR and the phase change φR,

respectively. Since radar echoes (in the base band) are
discrete signals, samples for R0 and vD are taken during
each PRT and during a so-called coherent processing
interval (CPI), respectively (Fig.1). For purpose of the
typical parameter estimation, the distance R can be assumed
to change negligibly, , because the constant
velocity vD is low, . Thus, for the Doppler
estimation, samples can be taken each PRT, at the same
discrete time delay belonging to R0. In general, radar
echoes from a simple (point) target, can be written at
discrete times , as follows: 

 (1)

where γ, g(t) and fD indicate the radar cross section (RCS),
the antenna gain, and the Doppler frequency, respectively.
Each m,  increases by (ir)regular PRT, during a CPI of
M pulses, m=1,M. If γ and g(t) can be assumed constant,
e.g. γg(t)=1, x(t) is periodic with fD.

Fig.1 Signal in pulse radar: a) transmitted, and b) received at
regular PRT. Received pulses (being reflected from an object) are
delayed and Doppler modulated. 

When PRT is regular, Doppler processing utilizes DFT
over a CPI. A CPI contains usually 8 to 64 pulses. In pulse
radar, Pulse Repetition Frequency (PRF), PRF=1/PRT,
equals a sampling frequency . Doppler frequency fD,

, can be higher than 
because a broad range of vD should be detected by radar.
This obviously ruins the Nyquist criterion. Frequencies
above  are usually obtained from two CPIs with different
PRTs (Fig.2). This solution for the Doppler ambiguity
problem is based on the periodicity of DFT with PRF. A
Doppler frequency fD higher than , can be written as
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(Fig.2): , where  and
 are the two known PRFs, fD1 and fD2 are estimated by

using DFT, and finally, the integers n1 and n2 are
numerically solved. The maximum Doppler frequency that
can be solved is the least common multiple of  and .

Fig.2 Obtaining Doppler frequency fD that is higher than sampling
frequency (PRF) by using two different PRFs in two adjacent
CPIs, indicated in a-b.

This spectral analysis of regular radar echoes has been
satisfactory for many decennia. However, irregular PRT is
also used because it makes radar perform better against the
deceptive jamming (e.g. [11]). In particular, irregular PRT
is more difficult to be mimicked by such a jammer. Since
this implies irregular sampling (imagine irregular PRTs
instead of constant PRT in Fig.1), PRF agile radar requires
completely new solutions for the spectral analysis. There
are no such solutions yet. When irregular PRT is being used
for the anti-jamming purposes, no spectral analysis (i.e.
Doppler processing) is being tried in pulse radar.

Applicability of current spectral analysis from irregular
samples, and the basic radar problems of Doppler
ambiguity and clutter suppression, are most relevant in this
study of spectral analysis on irregular PRT.

Irregular samples are well-understood in theory (e.g.
[3]), but their algorithms are usually too complicated (e.g.
[1]). Current work on irregular sampling is mostly
motivated by image processing (e.g. [12]). Algorithms
based on frame decomposition, have been developed by the
NUmerical Harmonic Analysis Group (NUHAG), University
of Vienna ([2]). Time-frequency techniques are also
efficiently applied, such as e.g. wavelet transform (WT) to
irregular samples obtained by decimation or expansion of
regular samples (e.g. [4] and [13]). Since typical radar
echoes are periodic and stationary signals (eq.(1)), these
techniques can hardly be applicable. Thus, such results are
not presented in this study because they would be too poor
to be interesting.

In radar signal processing, irregular PRT has also been
studied, but with emphasis on usage of the Fourier analysis
(e.g. [14]), rather than on solving the irregular sampling
problem. In the recent work done at the U.S. National
Severe Storms Laboratory (NSSL) ([9]), the familiar DFT is
used legitimately.

In the following, the applicability of the DFT and frame
algorithms to PRF agile pulse radar is investigated,
especially regarding their potential in solving Doppler
ambiguity and clutter filtering.

2. APPLICABILITY OF IRREGULAR SAMPLING

The following techniques illustrate the potential of the state
of art in the spectral analysis from radar irregular samples. 

The Lomb-Scargle periodogram (LSP) is the classical
DFT-based periodogram corrected by the statistical
behaviour and time-translation invariance ([6] and [10]). In
the further text, it is abbreviated by irDFT (irregular DFT).

In the NUHAG algorithm in [2] (further abbreviated by
NUHAG), a complex band-limited signal x(t) given by M
irregular samples, is first rewritten as trigonometric
polynomials p(t) of period 1 and degree K, . 

The solution for the Fourier coefficients , ,
, , is based on

properties of the frame operator: ,
where , represents the frame.

The NSSL algorithm in [9] (further abbreviated by NSSL),
is used for the radar Doppler processing of an interlaced
sampling scheme. 

In general, an NSSL sampling set { }, m = 1,M, is
multirate with rate K, and the mean interval . An NSSL

time interval ( ), as well as the whole sequence
, are integer multiples of the largest common time

interval , , so that the smallest regular set
{ }, i = 1,N, can contain { }, . 

Irregular samples x( ) can be zero-padded to regular
samples being a product of the sampling scheme ,

, and the regular samples . Based
on this relation (in the vector form): , i.e.

, the spectrum of x,
can be derived as follows:

  (2)

where C is a Toeplitz matrix whose row vectors are
cyclically shifted dft(c). Since C is singular (its rank is M,
M<N), and, thus not invertible, the NSSL idea is to use the
magnitudes in order to be able to benefit from the full rank
N (with particular sampling schemes only). Furthermore,
there are no complex additions in the product .
This implies limitations on the bandwidth of x, but it is no
constraint for most radar applications. 

Thus, the spectrum  contains L weighted
replicas of the spectrum . The deconvolution gives
the strongest replica, i.e. the signal spectrum . 
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3. RADAR SPECIFIC SPECTRAL ANALYSIS

Typical radar echoes simulated as normalized complex
noise-free exponentials from eq.(1), are input signals in this
radar irregular sampling study. The sampling is regular, and
irregular deterministic and random. The deterministic
irregular sampling involves repeating periodically the same
sequence of K irregular intervals. (Interlaced usually means
K=2, while multirate or bunch stands for an arbitrary K.)
The random sampling involves uniformly distributed jitter
added to regular sampling times. The frequencies are also
normalized by the average sampling frequency, . 

.

Fig.3 Spectra obtained by known techniques: a) NUHAG and b) LSP

(irDFT), from I) regular and II-III) irregular samples of a complex
noise-free exponential at frequency 0.2. Number of (regular or
irregular) samples equals 64. Multirate samples are of rate K=8.

In Fig.3, results with the frequencies lower than the
sampling frequency are presented first. 

If a signal is periodic and regularly sampled, irDFT (in
LSP) suffices (Fig.3bI). If the samples are irregular, irDFT on
multirate and random samples reveals the sampling pattern:
deterministic repetitions (Fig.3bII) and (pseudo) random
noise (Fig.3bIII), respectively. 

Fig.4 Spectra obtained by: a) NUHAG and b) LSP, from random
samples (Fig.3III), at frequencies beyond the sampling frequency.

NUHAG is superior, because it supports any sampling,
and moreover, provides accurate spectral components

(Fig.3a), but only within the sampling frequency band. In
other frequency bands (not defined formally in [2]), an
increased noise level and aliasing would appear (Fig.4a).

The irDFT from random samples, provides spectra
beyond  (without aliasing) but it adds significant noise
coming from the random sampling itself (Fig.4b).
Unfortunately, this can hardly be afforded in a radar
application because the signal-to-noise ratio (SNR) is
already critical. Although SNR increases linearly with a
number of samples, longer processing times should also
better be avoided.

Fig.5 Spectra obtained by: a) NSSL, and b) NUHAG, from multirate
samples (Fig.3II), at frequencies beyond the sampling frequency.

Fig.6 Extended NSSL algorithm illustrated by spectra of: a)
irregular sampling, b) point-target, c) sea, d) input, and e) output.
Sampling is multirate with K=2, L=5 (i.e ), and M=64,
as in [9]. Point-target echo is a noise-free complex exponential at
frequency 1.2. Clutter corresponds to sea state 5.

NLLS is comparable with NUHAG for multirate samples
(Fig.5a-b). Furthermore, NLLS enables solving the radar
problems of Doppler ambiguity and clutter filtering. NLLS

fs 1=

fs

5Tε 2Ts=
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supports frequencies above the Nyquist frequencies,
namely up to L/K times the sampling frequency (e.g. Fig.6).
If the clutter bandwidth is known, the complex clutter
signal can be estimated, and filtered from  (eq.(2)),
before the deconvolution. This filter, originally meant for
known land clutter in [9], is extended for sea clutter in [8]. 

In Fig.6, the extended NSSL algorithm is illustrated
when the multirate sampling contains five non-zero spectral
components (Fig.6a) which modulate the input signal
(Fig.6d) containing a noise-free target echo (Fig.6b) and
nonrandom sea clutter (Fig.6c). The power spectral density
(psd) of the sea clutter is assumed to be Gaussian shaped.
The clutter filtering and deconvolution result in the
frequency contents of the target echo (Fig.6e).

The range of unambiguous frequencies, may expand
limitlessly, but clutter filtering becomes more involved
with increasing complexity of the NLLS sampling. For
example, imagine how crowded Fig.6d could become with
a larger L, i.e. if a basic irregular sequence (Fig.6a) would
be longer and, thus, more complicated. 

4. CONCLUSIONS

Applicability of current spectral analysis, together with
Doppler ambiguity and clutter suppression, are most
relevant when studying radar irregular sampling.

Current spectral analysis from irregular samples,
provides no satisfactory solution for the radar specific
problem. Decreasing the sampling noise level in irDFT from
random samples, and also in NUHAG at frequencies beyond
the sampling frequency, should further be studied. 

An illustration of the radar problems of the Doppler
ambiguity and clutter suppression is given by using results
of NSSL that has been adopted. The extended NSSL tested on
simulated sea clutter, performs satisfactorily. It shall also
be tested with real measurements. Other irregular
sequences shall also be investigated that are tractable by
this algorithm, but also effective against the deceptive
jammers, and optimal for the unambiguous Doppler
extension as well as for the clutter filtering.
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