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ABSTRACT

Distributed sampling and reconstruction of a physical field
using an array of sensors is a problem of increasing inter-
est in environmental monitoring applications of sensor net-
works. This work addresses the related sampling framework
in the context of both bandlimited and non-bandlimited sen-
sor fields. We show, using a dither-based scheme, that it
is possible to reconstruct non-bandlimited fields with a re-
construction accuracy that depends on the available bitrate
R and the spectral decay characteristics of the sensor field
– we study exponentially decaying spectra as an illustra-
tion. For bandlimited fields f(t), the maximum pointwise
error Df decays as Df ∼ 2−a1R, i.e. exponentially with
rate R. For the non-bandlimited case, we show that for
fields u(t) with exponentially decaying spectral tails, i.e.,
|U(ω)| ∼ e−a|ω|, the maximum pointwise error Du de-
cays as Du ∼ e−a2

√
R(1 + o(R)) with spatial bit rate R

bits/meter. We also show that it is possible to trade off the
number of sensors with their precision, while maintaining
a similar reconstruction accuracy – a phenomenon that may
be dubbed as a “bit-conservation” principle underlying the
sampling framework.

1. INTRODUCTION

With the inception of sensor networks, high spatial resolu-
tion remote sensing of physical fields has become a topic
of great interest [1, 2, 3]. In the context of environmen-
tal monitoring and other field-reconstruction applications,
a key challenge is to instrument “distributed” sampling of
the sensor field with a collection of low-precision, low-cost
sensing devices having limited computing and communica-
tions capabilities. The intimate relation between this prob-
lem and that of classical non-uniform sampling has been
established recently in [1, 4] for bandlimited sensor fields,
for the settings of both deterministic and stochastic fields.
In addition to summarizing our results for the bandlimited
case, we study the important regime of non-bandlimited fields
in this work. Our motivation stems from the observation
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that unlike the classical sampling setup, anti-aliasing pre-
filtering luxury does not exists in the context of distributed
sensor field sampling, where the sensors have to directly
sample the field of interest. Given this requirement, what
can we say about the reconstruction performance as the sam-
pling density gets larger? What classes of physical fields
can be “effectively” sampled in a distributed way? By “ef-
fective,” we mean that the reconstruction error goes to zero
as the sampling density gets large and the sampling bit rate
gets large (note that this scaling property is not present in
the works of [2, 3]). What is the rate of decay of recon-
struction error as a function of the number of bits sent from
the sensor field to the collector? These questions will be
addressed quantitatively in this paper.

For simplicity, we will confine ourselves to the 1-D model
shown in Fig 1. We will use 1-bit A/D precision sensors to
highlight the low-precision nature of the sensing devices.
We assume that these sensors are densely distributed on a
straight line, and there is a central data collector. We con-
sider the field at a particular temporal “snapshots” and ana-
lyze the spatial reconstruction behavior for each snapshot.

The main contributions of this paper are:
1). We characterize the effect of oversampling and quan-
tization on amplitude-limited “smooth” fields that are ban-
dlimited or non-bandlimited with suitably decaying spectral
profile.
2). We establish how this can be ported to the distributed
sampling framework relevant to sensor networks in the con-
text of low-precision sensors, while maintaining similar asymp-
totic reconstruction performance. We uncover a key “bit-
conservation” principle that quantifies the fundamental trade
off between sensor precision and oversampling density.
3). We uncover an important “information scaling law” that
establishes how information “grows” as a function of num-
ber of sensors, and show that the per-node per-snapshot in-

formation requirement goes to zero at the rate of O
(

log N
N

)
for bandlimited fields and O

(
log2 N

N

)
for non-bandlimited

fields with exponentially decaying spectral tails. The pre-
cise utility of this scaling law depends on the underlying
routing protocol and transport model used to move this in-
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Fig. 1. We assume that 1-bit sensors are uniformly placed along a straight line. The first zero crossing locations per temporal snapshot
are located as follows: each sensor sends a 2-bit message to its right neighbor indicating two things: (i) whether or not a zero-crossing
has already been found by some preceding sensor and (ii) if a zero-crossing has not yet been found, the sign of the field plus dither at its
location. The sensor which observes a zero crossing for a particular snapshot (black sensors) communicates with the central data collector.

formation from the sensors to the data-collector. Nonethe-
less, the fact that the per-node information needs to go zero
is comforting and counters the “pessimistic” scaling law re-
sults for ad-hoc networks by Gupta and Kumar which (for
a specific point-to-point transport model) establish that the
per-node transport capabilities go to zero as the network
scales[5]. Our results show that even in this regime, it is
possible to do “useful” work in sensor networks, i.e. recon-
struct a field with arbitrary reconstruction accuracy.

For the rest of the paper lower case letters will denote
deterministic fields. Specifically, f(t) will represent a deter-
ministic BL field and u(t) will represent a non-bandlimited
(NBL) field. Both classes are assumed to be finite energy
and amplitude limited to the level 1. The distortion criterion
is the maximum pointwise error between the field and its re-
construction as the distortion criterion, Df := ||f−frec||∞,
where frec(t) is the final reconstruction of the field (using
any method).

2. APPLICATIONS TO SENSOR NETWORKS

Figure 1 illustrates the single bit dither-based sampling frame-
work. Let λ > 1 be a fixed oversampling factor and M =
2k sensors be placed in every T

λ length interval. The re-
sulting spatial bitrate is R = λ log M

T = λk
T and the sensor

density is N = λM
T . T is the Nyquist sampling interval for

the case of BL fields. For the case of NBL fields T is cho-
sen by balancing the aliasing and quantization errors. The
following results also hold for b-bit sensors and 2k−b+1 sen-
sors every T

λ length interval.

• Let M , one-bit sensors be placed uniformly at every
τ = T

λM in every interval of the form [ lT
λ , (l+1)T

λ −
τ ], l ∈ Z . The sensors at lT

λ are the starting nodes.

• Periodically, the sensors take snapshots of the 1-D
spatio-temporal field by comparing the field value to
the dither value at their respective locations (the dither
values are assumed to be pre-stored in sensors).

• Corresponding to each temporal snapshot of the field,
each starting node passes a message to its (right) neigh-
bor, indicating: (i) whether or not a zero-crossing has
already been found by some preceding sensor and (ii)
if a zero-crossing has not yet been found, the sign of
the field plus dither at its location. This requires 2-bits
of local messages (see fig 1).

• The first sensor in each T
λ interval that detects a sign

mismatch between what its left neighbor reports and
its own reading records a one. Other sensors record
a zero for that snapshot. The local communication
for detecting the zero-crossings need not be done in
real-time. The sensors can store the signs of the field
plus dither over many snapshots and locate the zero-
crossings later.

• Finally, each sensor encodes the zero-crossing data
using principles of distributed compression [6, 7].

Growth of information: To understand how the sensor
data-rate grows with M and T one needs to specify, at some
level, a temporal model for the evolution of the random
field. However, the temporal sequence of the first zero-
crossing locations in every T

λ -interval contains all the in-
formation pertaining to the field. Suppose that the sensors
within each T

λ interval could collaborate without penalty
to jointly encode the zero-crossing information over many
temporal snapshots. By design, there is exactly one sensor
per T

λ interval per snapshot that will record the value one,
i.e. only M possible vectors which require no more than
RT = log2(M) bits per snapshot per T

λ interval. It is pos-
sible to achieve a compression efficiency of log2(M) bits
every T

λ interval per snapshot without any sensor collabo-
ration using principles of distributed source coding theory
[6, 7] which exploits the correlation between sensor out-
puts. In fact, it is possible for each sensor to encode its
zero-crossing data at the rate Rsensor = 1

M log2(M) bits
snapshot without talking to other sensors in the same T

λ and
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the central unit will be able to recover the encoded informa-
tion.

We now show that the information density is finite for
a large class of smooth fields, i.e., a finite non-zero recon-
struction error D > 0 can be achieved by a finite number of
sensors in every T

λ -interval:-
For BL fields M ∼ 1

D , N ∼ 1
D (since T is fixed by the

Nyquist rate) and R ∼ log 1
D . For fields with exponentially

decaying spectra, M = O
(

1
D

)
, T = O

(
1

log 1/D

)
,

R = O
(
log2 D

)
, N = O

(
log 1/D

D

)
. For fields with finite

second moment in frequency domain, R = O
(√

1
D log 1

D

)
,

N = O
(

1

D
3
2

)
for high rates or small distortions.

Local inter-sensor communication cost: In the above lo-
cal communication protocol, each 1-bit precision sensor trans-
mits 2-bits to its right neighbor over a distance of τ . Hence,
the local sensor communication cost is 2T

Mλ bit-meters for
each sensor. In general, for b-bit sensors (b > 1) the local
sensor communication cost is no more than (b+1)/(λMb2b−1)
where Mb = M

2b−1 is the number of b-bit sensors needed to
match the asymptotic reconstruction error performance of
1-bit sensors (in the high rate case). The total local commu-
nication cost density is no more than 2

λ bit-meters. Thus,
with limited local communication cost, the sampling task
can be distributed among the sensors.
Sensor distribution: The “bit-conservation” principle holds
for BL fields at any rate and for NBL fields at high rates. For
these cases, as we increase the A/D precision (b increases),
we get a reduction in the number of sensors according to the
“conservation of bits” principle while maintaining the same
asymptotic error decay profile. Sensors need to be placed
only in intervals of the form

[
lT
λ , lT

λ + (Mb − 1)τ
)
, where

T is fixed according to the spectral decay of the field and
the target distortion. This leaves intervals over which there
is no need to sample the field at all. Hence at high rates for
a given reconstruction quality the number of sensing units
goes down exponentially with b: 1-bit dithered sampling
needs M sensors every T

λ interval, b-bit (b > 1) dithered
sampling needs Mb = M/2b−1 sensors, and high precision
sampling (see section 3) needs only one sensor every T

λ in-
terval. Since the scheme naturally allows “inactive” regions
in oversampling, we can have bunched irregular sampling
using sensors. This allows for design flexibility in sensor
deployment. For example, in rugged terrain or in the pres-
ence of occluding obstacles, one would need to use higher
precision sensors. Where sensors can be deployed in large
numbers it is sufficient to use cheap 1-bit sensors.
Robustness: The dither-based oversampling method also
offers robustness to node failures in terms of a graceful degra-
dation of reconstruction error. For example, if every alter-
nate node fails, the effective inter-node separation would in-
crease to 2τ . The effect will vary for different spectral tails.

For BL fields this increase in minimum distance means a
loss of 1-bit resolution. However, for NBL fields a decrease
in effective τ will affect the balance between the aliasing
error and the quantization error and hence the degradation
will not be as simple as in the case of BL fields[8].

3. FIELD RECONSTRUCTION AND ACCURACY

A field f(t) bandlimited to
[− π

T , π
T

]
can be reconstructed

from the uniform samples f
(

lT
λ

)
, l ∈ Z according to

f(t) =
∑
l∈Z

f

(
lT

λ

)
φ

(
t

T
− l

λ

)
(1)

where φ(t) is a stable interpolating kernel satisfying
∑

l∈Z∣∣φλ

(
t
T − l

λ

)∣∣ < C < ∞ and C is independent of the band-
width W := π

T [9, 1]. For samples taken at non-uniform
sampling locations collected at the locations {tl}l∈Z satis-
fying supl∈Z

∣∣tl − lT
λ

∣∣ < κ < ∞ and infi �=j |ti−tj | > δ >
0, there exist bandlimited interpolating functions ψl(t) such
that

f(t) =
∑
l∈Z

f(tl)ψl

(
t − tl

T

)
(2)

where C ′ := supt∈R

[∑
l∈Z |ψl

(
t−tl

T

) |] < ∞[9], with C ′

independent of T as for the uniform case.

3.1. Sampling the field with high precision sensors

Assume that sensors are equipped with k-bit precision uni-
form scalar quantizer Qk(.). The field is sampled at the lo-
cations { lT

λ }l∈Z . For BL fields, T is the Nyquist sampling
interval and for NBL fields T is chosen by balancing the
aliasing and quantization errors. We refer to this sampling
framework as “Nyquist-like” sampling in what follows. The
stable reconstruction of the field obtained from the quan-
tized samples is f̂(t) =

∑
l∈Z Qk

(
f

(
lT
λ

))
φ

(
t
T − l

λ

)
and

û(t) =
∑

l∈Z Qk

(
u

(
lT
λ

))
φ

(
t
T − l

λ

)
, where Qk(.) de-

notes the uniform scalar quantizer[10]. For BL fields: Df =
||f − f̂ ||∞ < C2−

T R
λ , i.e. maximum pointwise error de-

cays exponentially in k, the bit budget for every Nyquist
interval[9]. For NBL fields, the reconstruction error de-
pends on the spectral decay of the field. For example, for
u(t) with |U(ω)| ∼ ea|ω|, |ω| > W0, for T < π

W0
, we

get Du = ||u − û||∞ ∼ exp
[
−√

πaλ log 2
√

R
]
[8]. The

results will be different for different spectral decay charac-
teristics of the field. However, for fields satisfying a mild
condition

∫
R
|ω|2|U(ω)|dω < ∞ it can be shown that for a

finite non-zero Du, only a finite k is needed.

3.2. Sampling the field with 1-bit precision sensors

Let M = 2k sensors of 1-bit precision be placed uniformly

in every interval
[

lT
λ , (l+1)T

λ

)
l∈Z

with an inter-sensor spac-

ing τ = T
Mλ . A smooth dither field dT (t) with |dT (lT/λ)| =
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γ > 1 and sgn
{
dT

(
lT
λ

)}
= −sgn

{
dT

(
(l+1)T

λ

)}
en-

sures that the sum field f(t) + dT (t) (resp. u(t) + dT (t))
crosses the level zero in every interval

[
lT
λ , (l+1)T

λ

)
. A

dither field with uniformly bounded slope ||d′T ||∞ = ∆
T <

∞ translates a bounded inaccuracy in space to a bounded
inaccuracy in amplitude through the mean value theorem.
For example, dT (t) = γ cos

(
λπt
T

)
is a valid dither func-

tion. If ml is the first index such that [f + dT ]
(

lT
λ + mlτ

)
and [f + dT ]

(
lT
λ + (ml + 1)τ

)
have different signs, then

|f(tl)+dT (tl)| < ||f+dT ||∞ τ
2 , where, tl := lT

λ +
(
ml + 1

2

)
τ .

If f̂(t) =
∑

l∈Z(−d(tl))ψl

(
t−tl

T

)
and û(t) =

∑
l∈Z(−d(tl))

ψl

(
t−tl

T

)
, then Df := ||f − f̂ ||∞ < C ′′2−

T R
λ where C ′′

is independent of T [9]. For NBL fields the result depends
on the spectral decay. For example, fields with exponential

decay, Du := ||u − û||∞ ∼ exp
[
−√

πaλ log 2
√

R
]
(1 +

o(R))[8]. For high rates R, the distortion behaves similar to
the “Nyquist-like” sampling.

3.3. The trade-off between the number of sensors and
their precision

Let the bit budget per unit length R and k be fixed. As
opposed to 1-bit sensors that can detect only a single level
crossing, b-bit sensors for 1 < b < k can detect a level
change among 2b − 1 levels. This idea can be used to de-
sign a dither based scheme with b-bit precision sensors with
sensor density strictly less than 2k in every T

λ interval. The
idea is to use a dither function with bounded slope which
forces a level crossing in an interval of the form [Al, Bl] :=[

lT
λ , lT

λ + (Mb − 1)τ
)
l∈Z , where Mb := M

2b−1 . Sensors are

placed at every τ := T
λ2k and thus the position of the first

level crossing can be located to an accuracy of τ
2 . Let ml

be the first index of level crossing and let ql be the level
crossed in [Al, Bl]l∈Z . Let tl = lT

λ +
(
ml + 1

2

)
τ , then

f̂(t) =
∑

l∈Z(ql − db(tl))ψl

(
t−tl

T

)
is the approximate re-

construction. For BL fields Df := ||f − f̂ ||∞ < C ′′′2−
T R
λ ,

where C ′′′ is a constant independent of T [1]. For the NBL
case, the trade-off comes into play at high rates when the
slope of the field can be bounded in terms of the decay-
ing spectral characteristics. For example, at high-rates for
the field u(t) with exponentially decaying spectrum Du =
||u− û||∞ ∼ exp

[
−√

πaλ log 2
√

R
]
. These results can be

generalized to wide sense stationary stochastic fields with
Lp distortion measures. We refer the interested reader [4]
for the details. We state the bit-conservation principle for
BL fields in general and for NBL fields at high rate as
Bit-conservation principle: Let k be the number of bits
available per T

λ -interval. For each 1 ≤ b < k there exists
a sampling scheme with 2k−b+1 b-bit A/D converters per
T
λ -interval achieving a worst-case pointwise reconstruction
accuracy similar to the “Nyquist-like” sampling.

4. CONCLUSIONS AND FUTURE WORK

We addressed the problem of deterministic oversampling
and reconstruction of bandlimited or (smooth) non-bandlimited
fields and showed that the maximum pointwise error de-
creases to zero as the bitrate goes to infinity. This work
summarizes the scope of the distributed sampling frame-
work in the case of smooth fields. We showed how the dis-
tributed sampling framework can be applied to sensor net-
works, with distortion going to zero as the number of sen-
sors in the network scales to infinity. We also showed the ex-
istence of a “bit-conservation” principle. Ongoing work in-
cludes stochastic extensions to non-bandlimited, wide-sense-
stationary processes and in general to fields having a finite
rate of innovation [11].
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