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ABSTRACT

This paper describes a new approach to the source localization and
tracking problem in wireless sensor networks. A fast, easy-to-
implement algorithm for localizing a source using received signal
strength measurements is presented. The algorithm is based on in-
cremental subgradient optimization methods. Using theory on the
convergence rates of these methods we characterize the amount
of in-network communication required to achieve an accurate esti-
mate of the source’s location. In comparison to other localization
and tracking algorithms described in the literature, the amount of
communication (and thus energy and bandwidth) used by our al-
gorithm is much lower than that used by other schemes, especially
as network size grows.

1. INTRODUCTION

The problem of localizing and tracking a target has been widely
sighted as a canonical application of wireless sensor networks, as
sensor networking provides an attractive approach to spatial moni-
toring. Wireless technology makes these systems relatively easy to
deploy, but also places heavy demands on energy consumption for
communication. In this paper we present a new approach to source
localization and tracking using received signal strength measure-
ments. Based on incremental gradient descent-like optimization
methods, our algorithm only requires that small amounts of data
be communicated over short distances.

In order to solve the tracking/localization problem, individual
sensors must first detect the presence of a source from their local
data. Then collaborative signal processing at the network level in-
volves routing information through the network and fusing the data
from different sensors to generate an estimate of the source loca-
tion or bearings. Previously proposed schemes for collaborative
data processing and communication have been either hierarchical
or based on collecting and fusing the data from all sensors at a
central location. The work presented in this paper adopts a decen-
tralized approach to collaborative signal processing.

We motivate taking a decentralized approach for the follow-
ing two main reasons. First, in-network processing of data is more
efficient in terms of energy and bandwidth usage, especially as
the number of sensors grows. Also, distributed algorithms are ar-
guably more robust than purely centralized or hierarchical process-
ing schemes since all nodes in the network bear equal importance
in a distributed approach. Thus, in a decentralized scheme the net-
work has a higher tolerance to individual node failures.
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In, [1], Sheng and Hu consider the problem of acoustic source
localization in sensor networks. They formulate a Maximum Like-
lihood approach which requires sensors to transmit all of their data
to a fusion center for processing. In large networks, the massive
amount of energy and bandwidth required make such an approach
impractical. See [2] for many other articles related to source local-
ization and tracking. An information-driven approach to routing
and collaboration is described by Zhao et al. in [3] which trades
off the utility of publishing data at individual sensors with the cost
of communicating it. They describe a particle-filtering method
which requires that many particle weights (perhaps hundreds) be
communicated through the network to track the source location.
While this approach is viable from the perspective that it is dis-
tributed and thus robust, it is unclear whether the amount of en-
ergy and bandwidth expended in transmitting numerous particle
weights through the network is practical for large networks.

The driving philosophy behind our approach is to balance esti-
mator accuracy with the amount of communication required. This
is accomplished via in-network processing of data. An estimate
of the source position is circulated through the network. Each
node makes a small adjustment to the estimate based on its lo-
cal data, and then passes the modified estimate to its neighbors.
Similar to Sheng and Hu[1], assume that each sensor knows its
coordinates (either by GPS or some other mechanism), and that
the received signal strength measurements behave according to a
far-field model. That is, the j-th measurement at sensor i takes
the form yi,j = si + wi,j , where wi,j are i.i.d samples of a white
Gaussian noise process, and

si =
A

||θ − ri||β , (1)

where A is the amplitude (energy) of the signal emitted by the
source, θ is the source location, ri is the location of the i-th sensor,
and β is related to the attenuation characteristics of the medium
through which the signal is begin transmitted. Under these as-
sumptions the maximum likelihood estimate for the location of a
stationary source is

θ̂ = arg min
θ

1

nm

n∑
i=1

m∑
j=1

(
yi,j − A

||θ − ri||β
)2

, (2)

where n is the number of sensors and m is the number of mea-
surements at each sensor. We use a distributed incremental gra-
dient algorithm to solve this non-linear least squares optimization
iteratively.
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2. DECENTRALIZED INCREMENTAL OPTIMIZATION

In our algorithm a parameter estimate is cycled through the net-
work. When each sensor receives the current estimate it makes a
small adjustment based on its local data and then passes the up-
dated estimate on to its neighbors. Without loss of generality, as-
sume that sensors have been numbered i = 1, 2, . . . , n according
to their order in the cycle. On the k-th cycle, sensor i receives an
estimate ψ

(k)
i−1 from its neighbor and computes an update accord-

ing to

ψ
(k)
i = ψ

(k)
i−1 − α∇fi(ψ

(k)
i−1), (3)

where α > 0 is the step size, ∇fi(ψ
(k)
i−1) denotes the gradient of

fi evaluated at ψ
(k)
i−1, and

fi(ψ) =

m∑
j=1

(
yi,j − A

||ψ − ri||β
)2

. (4)

The algorithm begins with arbitrary initial condition ψ
(0)
0 = θ̂(0),

and after a complete cycle through the network we get θ̂(k) =

ψ
(k)
n = ψ

(k+1)
1 . Note the similarities between this algorithm and

standard gradient descent. Essentially, at each subiteration an up-
date is made by optimizing the function fi (which only depends on
local data at sensor i) for the current estimate. Now, the amount of
in-network communication required for this algorithm is a func-
tion the number of cycles used therefore it is useful to understand
the convergence behavior of this algorithm.

As presented above, the decentralized algorithm is a special
case of incremental subgradient optimization methods. The gen-
eral form of these optimization problems are concerned with min-
imizing functions of the form f(θ) =

∑n
i=1 fi(θ)/n. We use the

following result presented by Nedić and Bertsekas in [4] to charac-
terize the tradeoff between estimator accuracy and resource usage.
Assume that ||∇fi||/n ≤ c. Then for a step size α, after K cycles
with

K =

⌊ ||θ∗ − θ(0)||2
α2c2

⌋
(5)

we have

f(θ(K)) ≤ f(θ∗) + αc2. (6)

Observe that as αc2 goes to zero, the estimate θ̂(K) gets arbitrarily
close to minimizing our objective function, f . Thus, using (6) we
can set a step size α in order to be within ε = αc2 of the optimal
cost, and (5) bounds the number of cycles required to achieve this
accuracy. See [4] for a proof.

It should be noted that the description we give here is in terms
of the gradient of f since in this paper we are optimizing a dif-
ferentiable function, but in general these methods can be applied
to nondifferentiable functions using subgradients rather than the
gradient. Thus, the algorithm could easily extended to optimize a
more complicated cost function – for instance, one depending on
multi-modal measurements. The framework can also be modified
to compute the MAP estimate by considering a prior density at
each sensor.

Using these convergence results we can precisely quantify the
performance of our algorithm for estimating the location of a sta-
tionary source. In general it is much more difficult to theoretically
analyze the tracking performance of an algorithm without making
assumptions about the source’s dynamic behavior.

3. DISTRIBUTED VS. CENTRALIZED PROCESSING:
ENERGY-ACCURACY ANALYSIS

We assume that all communication of data through the network
is packet-based and multihop as opposed to direct communication.
Based on this model, the expected total energy used for in-network
communication by any sensor network algorithm can be written as

E(n) = b(n) × h(n) × e(n), (7)

where b(n) is the total number of packet transmissions, h(n) is
the average number of hops over which each packet is transmitted,
and e(n) is the average amount of energy required to transmit one
packet over one hop. In general, e(n) depends on the density of
nodes and the actual communication system being used, thus we
express energy consumption in terms of e(n).

In one cycle of our incremental algorithm each node makes a
single communication – the current location estimate – to its near-
est neighbor. Thus, the average number of packets transmitted is
bincr(n) = O(nK), where K is the number of cycles required
for the desired level of accuracy determined according to (5) and
(6). All communications in this scheme are between neighboring
nodes so hincr(n) = 1. The total expected energy usage with the
incremental algorithm for accuracy ε is

Eincr(n) = O
( n

ε2
e(n)

)
. (8)

That is, the total energy used in our decentralized approach grows
linearly with the number of sensors, and is inversely related to the
desired level of accuracy. Note that there is no dependence on
the amount of data collected at each sensor since only the source
location estimate is communicated through the network and not
raw data.

Alternatively, consider the the approach where each sensor
transmits all of its data to a fusion center. The number of packets
transmitted is bcen(n) = O(mn). If the n nodes are uniformly
distributed over a two-dimensional field then the average num-
ber of hops from any sensor to the network perimeter is hcen =
O(

√
n), and the expected total communication energy for the cen-

tralized approach is Ecen(n) = O(mn3/2e(n)). In comparison to
(8), we see that when ε2 ≥ 1/(m

√
n) the incremental approach is

more efficient in terms of resource consumption. Thus, as both the
size of the network and the amount of data collected at each node
grow, decentralized in-network processing is much more advanta-
geous than centralized processing from the perspective of energy
and bandwidth consumption.

4. SIMULATION RESULTS

4.1. Locating a Stationary Source

We have simulated a scenario where 100 sensors are uniformly dis-
tributed over a 100 × 100 field, with a stationary acoustic source
positioned at a random location. From this point forward we also
assume that β = 2. Of the 100 sensors in the field, those lo-
cated with a radius of 15 from the source make 2 measurements of
received signal strength and then implement the incremental sub-
gradient method described above to find a maximum likelihood
estimate for the source location (detecting the presence of a source
from local data is a separate problem not addressed in this paper).
The first sensor to detect the presence of an acoustic source and
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generates an initial location estimate by choosing a point in a ran-
dom direction at a distance from itself based on its local data. Fig-
ure 1 shows contours of the global cost function being optimized
for one simulation. Solid black dots indicate active sensor loca-
tions and the black square in the center of the figure is the source
location. In this case, 11 of the 100 sensors were in active range of
the source. Parameters A and σ2

w were such that the average SNR
at active sensors was -11dB. The dashed line shows the solution
trajectory with step size α = 1. Circles along the trajectory denote
the location estimate after each cycle. The estimate converges to
the optimal solution after only a few cycles.
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Fig. 1. Cost function contours and the solution trajectory for one
simulation. In this case 15 of the 100 sensors in the 100 × 100
field detect the source and collaborate to identify its location. The
average SNR at an active sensor was −11dB.

Figure 2 illustrates the performance of our algorithm at various
step sizes. For each step sizes α between 0.1 and 5 (in increments
of 0.1) the simulation as described above was repeated 500 times.
The solid line shows the average root mean squared error (RMSE)
and the dashed line represents the average number of optimization
cycles before the decentralized algorithm reached a solution with
the desired level of accuracy. As suggested by the theory, a more
accurate solution can be achieved with smaller step sizes, however
more cycles (and thus more energy and bandwidth) are required.

4.2. Tracking a Moving Source

Next we analyze the performance of incremental subgradient meth-
ods for tracking a moving source. In the case of a stationary source
we saw the trade-off between the accuracy of our position estimate
and the number algorithmic cycles required to reach this accuracy.
The number of cycles is directly proportional to the amount of
communication required. In general it is difficult to theoretically
analyze the performance of tracking algorithms without making
some assumptions about source dynamics (e.g. assumptions on
maximum source velocity or change of direction speeds). Through
simulations we find that accuracy is still directly proportional to
the step size, α. However, as a consequence of the time con-

0 1 2 3 4 5
2.5

3.3

4.1

4.9

5.7

6.5

R
M

S
E

Step Size α
0 1 2 3 4 5

50

100

150

200

250

300

A
ve

ra
ge

 N
um

be
r 

of
 C

yc
le

s,
 K

Fig. 2. The energy-accuracy tradeoff for locating a static source
using incremental subgradient methods. Both RMSE (solid line)
and the average number of cycles (dashed line) before reaching the
desired level of accuracy are shown as functions of the step size, α.
Each data point represents the average over 500 simulations with
different sensor configurations and source locations.

strained nature of the tracking application, the acceptable number
of cycles before reaching an accurate solution is limited. Thus, for
on-line tracking there is a restriction on processing time in addition
to energy and bandwidth constraints.

To illustrate these tradeoffs we have simulated the situation
where a source moves across a 100 × 100 field, taking the dashed
line trajectory displayed in Figure 3. The source moves from left to
right across the field with a constant horizontal velocity, so that the
true source velocity is proportional to the slope of it’s trajectory.
At each point in time, sensors within a radius of 15 of the source
detect its presence, are activated, and make two signal strength
measurements. Parameters A and σ2

w are again set so that the av-
erage SNR at active sensors is −11dB. To account for the time
constrained nature of the tracking problem we only allow one op-
timization cycle at each step in time. The active nodes circulate an
estimate of the source location once, and this position estimate is
then used as the initial estimate at the next point in time. Thus, the
variable k in the incremental update equations acts as a discrete
time variable and θ̂(k) is the estimated source location at time k.

We repeated this experiment 100 times, with new sensor loca-
tions drawn randomly on each trial. Figure 4 shows the average
RMSE at each point in time, for different step sizes. For smaller
step size values the algorithm initially takes longer to “lock on”
to the source location, but after locking on the average estimation
error is lower than the error for larger step sizes. The increase in
RMSE at later times (as the source reaches the right side of the
sensor field) is due to the fact that the source velocity increases as
it moves along this portion of the path (roughly from x = 70 to
100). When a smaller step size is used the tracking algorithm can
no longer keep up with the source, so the RMSE increases.

Figure 5 depicts the average RMSE over all time steps at dif-
ferent step sizes. The energy-accuracy analysis for the static source
version of the decentralized algorithm revealed that estimator ac-
curacy is inversely proportional to step size, α, and that the desired
level of accuracy increases like 1/

√
α. However, we see effects

due to the time-constraints in source tracking at very small step
sizes. Specifically, in the static case small step sizes allowed for a
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Fig. 3. In this experiment a source moves from left to right across a
field taking the trajectory shown by the dashed line. Dots represent
the locations of 200 sensors for one realization of the experiment.

more accurate solution but required more optimization cycles. Be-
cause the number of cycles is constrained by time in the tracking
application, the RMSE increases for very small step sizes (α < 1).
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Fig. 4. The RMSE at each source position, plotted for different
step sizes. With larger step sizes the algorithm locks on to the
source faster but with a greater average error.

5. CONCLUSION AND FUTURE WORK

In this paper we have described a new decentralized algorithm for
localizing and tracking a source. Sensors circulate a location es-
timate through the network and perform an update which resem-
bles one step of a gradient descent algorithm using only their local
data. The tradeoff between accuracy and the amount of commu-
nication is quantified and can be controlled through the choice of
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Fig. 5. RMSE averaged over the entire trajectory, for different step
sizes. From the section on locating a stationary source we expect
accuracy to increase linearly with step size. However in the track-
ing application there are also time constraints which limit the num-
ber of incremental subgradient cycles which can be performed at
each step in time. Consequently, average accuracy is hindered for
very small step sizes which require more time to reach an accurate
estimate.

a step size. We show that the expected amount of communication
for our decentralized algorithm is independent of the amount of
data collected at each sensor and grows linearly with the number
of sensors in the network. In comparison to a centralized process-
ing scheme, the decentralized algorithm makes much better use of
energy and bandwidth resources as either the size of the network
and the amount of data collected by each sensor grow.

As described here, sensor communication occurs in a cycle
through the network. Future work will be focused on developing
an asynchronous version of the algorithm, as well as studying dif-
ferent scheduling schemes which balance the utility of information
at each sensor with the cost of transmitting it. In this work we have
also assumed that individual sensors can detect the presence of a
source in their data, and this task will also be addressed in future
work. Finally, our approach to the tracking problem thus far has
been based on the assumption that the source is stationary over a
short period of time. A future approach to tracking will include
target dynamics in the model.
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