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ABSTRACT

We consider the rate-distortion problem for sensing the continu-
ous space-time physical temperature in a circular ring on which a
heat source is applied over space and time, and which is allowed
to cool by radiation or convection. The heat source is modelled
as a continuous space-time stochastic process which is bandlim-
ited over space and time. The temperature field is the result of a
certain continuous space-time convolution of the heat source with
the Green’s function corresponding to the heat equation, which
is space and time invariant. The temperature field is sampled at
uniform spatial locations by a set of sensors and it has to be re-
constructed at a base station. The goal is to minimize the mean-
square-error per second, for a given number of nats per second, as-
suming ideal communication channels between sensors and base
station. We find a) the centralized Rc(D) function of the tem-
perature field, where the base station can optimally encode all the
space-time samples jointly. Then, we obtain b) the Rs-i(D) func-
tion, where each sensor, independently, encodes its samples opti-
mally over time and c) the Rst-i(D) function, where each sensor
is constrained to encode also independently over time. We also
study two distributed prediction-based approaches: a) with per-
fect feedback from the base station, where temporal prediction is
performed at the base station and each sensor performs differen-
tial encoding, and b) without feedback, where each sensor locally
performs temporal prediction.

1. INTRODUCTION
In sensor networks, some continuous space-time physical phenome-
non is sampled by a set of remote sensors, and an estimate of this
physical phenomenon has to be obtained at a base station. Due
to the restricted processing power in the sensors, it is usually not
allowed to have communication between sensors, and it is very im-
portant to minimize the rate at which the information is encoded.
There has been important research work going in this direction [2].
However, in all this previous work, the physics that describes the
phenomenon has not been taken into account.

In this paper, we incorporate the physics into a sensor network
rate-distortion problem where the network is sensing the continu-
ous space-time physical temperature on a closed circular ring on
which a heat source is applied over space and time, and which is al-
lowed to cool by electromagnetic radiation or convection. The heat
source is modelled as a continuous Gaussian space-time (wide-
sense stationary) stochastic process which is bandlimited over space
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and time. The temperature field over the ring is the result of a cer-
tain continuous space-time convolution of the heat source with the
Green’s function of our system, which turns out to be space and
time invariant. The temperature field is sampled at uniform spatial
locations by a set of sensors and the goal is to minimize the distor-
tion measured in mean-square-error per second at a base station,
for a given number of nats per second, assuming ideal communi-
cation channels between the sensors and the base station.

This paper is structured as follows. In Section 2, we explain
the physics governing the temperature field on a ring, and the con-
cept of Green’s function of the system. In Section 3, we explain
the rate-distortion problem. In Section 4, we find analytically the
centralized Rc(D) function, where the base station can encode all
the spatio-temporal samples together, and in Section 5, we obtain
a) the Rs-i(D) function, where each sensor, independently, en-
codes its samples optimally over time, and b) the Rst-i(D) func-
tion, where each sensor encodes also independently over time.
Then, in Section 6, we study two distributed prediction-based ap-
proaches: a) with perfect feedback from the base station, where
temporal prediction is performed at the base station and each sen-
sor performs differential encoding, and b) without feedback, where
each sensor locally performs temporal prediction. We also explain
briefly nested code based constructions [4] for our problem.

2. TEMPERATURE PROBLEM IN THE RING

The sensed physical field that we consider in this work is the con-
tinuous space-time temperature field T (x, t) in a closed circular
(heat conductor) ring of length 2L, where x ∈ [0, 2L[ indicates
the spatial position in the ring (see Fig. 1), and t ∈ �

. It is as-
sumed that the ring has a very small cross-section, so that the tem-
perature at all points of the cross-section may be taken to be the
same. A space-time varying heat source (e.g. electric heating),
measured in (Watts/meter3), is applied on the ring, which is also
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allowed to cool by electromagnetic radiation or forced convection
to its surrounding medium.

2.1. Heat Source and Thermal Properties

The heat source g(x, t) is allowed to both produce (additive source)
and withdraw (sink) heat, and we model it by a continuous space-
time Gaussian stochastic process, which is periodic and bandlim-
ited over space, and which is bandlimited over time, that is:

g(x, t) =
g0(t)√

2
+

M�
m=1

(gm(t) cos(λmx) + gm+M (t) sin(λmx))

(1)
where M + 1 is the number of harmonics (spatial bandwidth of
2M + 1), λm = mπ

L
, m ≥ 0 (thus the fundamental spatial period

is 2L, which is equal to the length of the ring), and {gm(t)}2M
m=0 is

a set of 2M +1 continuous-time real wide-sense stationary (WSS)
Gaussian stochastic processes with zero mean and which are as-
sumed to be independent, that is, the cross-correlation Rgm1gm2

(γ) =
E[gm1(t + γ)gm2(t)] = 0 for m1 �= m2, ∀γ ∈ �

. Moreover,
each continuous-time process gm(t), m = 0, . . . , 2M , is assumed
to be bandlimited to [−π, π] and to have a constant gain Gm > 0,
that is, each process has a power spectral density (PSD) given
by Sgm(Ω) = Gm 1[−π,π](Ω), where Ω denotes the continuous-
time angular frequency. We also assume1 that Gm = Gm+M , for
m = 1, · · · , M .

The thermal parameters [1] of the ring, which play an im-
portant role in the rate-distortion properties, are: a) its thermal
conductivity κ in (Watts/(meter Kelvin)), b) its thermal diffusiv-
ity α = κ/(ρCp) in (meters2/second), where ρ is the density in
(kg/meters3) and Cp is the specific heat in (Joules/(kg Kelvin)),
and c) its dissipation parameter µ = 2h

κδ
in (meters−2), where h is

the heat transfer coefficient and δ is the thickness of the ring.

2.2. Heat Differential Equation for the Ring

Given a source g(x, t) and the different thermal parameters of the
ring, the differential equation describing the resulting temperature
T (x, t) in the ring, is given by (see Fig. 1):

∂2T (x,t)

∂x2 + g(x,t)
κ

− µT (x, t) = 1
α

∂T (x,t)
∂t

T (0, t) = T (2L, t)

∂T (x,t)
∂x ��� x=0

= ∂T (x,t)
∂x ��� x=2L

� ���� (periodic boundary conditions)

T (x,−∞) = 0 (initial condition)
(2)

Using Green’s Theorem [1], the solution of (2) is given by:

T (x, t) =
α

κ � τ=t

τ=−∞ � ξ=2L

ξ=0

g(ξ, τ )h(x − ξ, t − τ ) dξ dτ

where h(x, t; ξ, τ ) = h(x − ξ, t − τ ) is the Green’s function of
the system described by (2), which turns out to be time and space
invariant. This means that the operator corresponding to the dif-
ferential equations in (2) is equivalent to a linear time-invariant
space-invariant system described by an impulse response h(x, t).
This impulse response can be shown to be [1]:

h(x, t) = u(t) � 1

2L
e−µαt +

1

L

∞�
m=1

e−(λ2
m+µ)αt cos(λmx) �

1This condition is necessary to make T (x, t) stationary over space.

where u(t) is the step function, that is, u(t) = 1 for t ≥ 0 and
u(t) = 0 for t < 0. Thus, the impulse response is causal over time
and periodic over space with period 2L, which implies that there is
a continuous-space circular convolution and the final temperature
process T (x, t), which is periodic over space, is given by:

T (x, t) = β0(t)√
2

+ 	 M
m=1 (βm(t) cos(λmx) + βm+M (t) sin(λmx))

βm(t) = gm(t) ∗ hm(t), hm(t) = u(t) 
 α
κ
e−(λ2

m+µ)αt �
where λm = λm+M for m = 1, · · · , M , and the 2M + 1 inde-
pendent Gaussian processes {βm(t)}2M

m=0 are still bandlimited to
[−π, π], but their spectral densities are given by:

Sβm(Ω) = F(hm(t)) Gm 1[−π,π](Ω) =
Amc2m
Ω2+c2m

, |Ω| ≤ π,

Am = Gm
κ2(λ2

m+µ)2
, cm = (λ2

m + µ)α

(3)
3. RATE-DISTORTION PROBLEM

The temperature process is sampled uniformly in space and time at
the corresponding spatial and temporal Nyquist sampling frequen-
cies, respectively. This means that the sampling period in space
is Ts = 2L

2M+1
meters and the sampling period in time is Tt = 1

second. The sensing task is performed by 2M + 1 sensors which
are located at xn = 2L

2M+1
n, n = 0, . . . , 2M . Over time, the n-th

sensor takes the samples {T (xn,−∞), . . . , T (xn, tj), T (xn, tj+1),
. . . , T (xn,∞)}, where tj+1 − tj = 1.

The continuous space-time temperature process T (x, t) has
to be reconstructed at a base station (BS) located at the center of
the ring, as illustrated in Fig. 1. Given a reconstructed temperature
process �T (x, t), the distortion, which we denote by D, is measured
in mean-square-error (MSE) per second, and is defined by:

D =
1

2L � 2L

0

lim →∞
1

2 � � 
−  E[(T (x, t) − �T (x, t))2] dt dx

(4)
The goal is to minimize the distortion at the BS for a given total
number of nats per second, denoted by R. Regarding the commu-
nication model, it is assumed throughout this work that a) from
the sensors to the BS, there are ideal channels, that is, if the n-th
sensor has to deliver Rn nats per second to the BS, the sensor will
spend the necessary power to transmit them without error2, and b)
from the BS to the sensors, there is a perfect channel where the BS
can transmit at an infinite rate to the sensors (perfect feedback).
Our objective is to study the rate-distortion problem under these
communication channel idealizations.

4. RC(D) FOR CENTRALIZED CODING

In this section, we obtain the rate-distortion function for the most
idealized case where the BS receives all the (unquantized) space-
time samples {T (xn,−∞), . . . , T (xn,∞)}2M

n=0 and encodes all
of them jointly. We denote this function by Rc(D). In order
to find Rc(D), we first express the distortion D, as defined in
(4), as a function of the distortions corresponding to the processes
{βm(t)}2M

m=0, which completely determine the temperature pro-
cess T (x, t). Let � be the (2M + 1)× (2M + 1) matrix with m-
th row ( � )m = [ 1√

2
, cos( 2πm

2M+1
), · · · , cos( 2πmM

2M+1
), sin( 2πm

2M+1
),

· · · , sin( 2πmM
2M+1

)]. Let � (t) = [β0(t), . . . , β2M (t)]T and � (t) =

2The consideration of a real channel is a subject of our current research.

III - 914

➡ ➡



[T (0, t), . . . , T (2M 2L
2M+1

, t)]T , which is the spatial vector of tem-
perature samples. Then, the BS can find � (t) from � (t) by:

� (t) = � � (t) ⇐⇒ � (t) =
2

2M + 1
� T � (t) (5)

Thus, to provide a set of reconstructed processes { �βm(t)}2M
m=0 is

equivalent to providing a reconstruction �T (x, t). Because of the
orthogonality property of the Fourier series over space, and the
fact that {βm(t)}2M

m=0 are independent random processes, it can be
easily shown that D = 1

2 � 2M
m=0 Dm and R = � 2M

m=0 Rm, where
Dm is the MSE per second associated to the temporal process
βm(t), which is given by Dm = lim � →∞ 1

2
� � �

− � E[(βm(t) −�βm(t))2] dt, and Rm is the corresponding number of nats per
second. These additivity properties allow us to use the equal-
slope technique [3] over the set of processes {βm(t)}2M

m=0. In
order to do this, we first need to calculate the rate-distortion func-
tions {Rm(Dm)}2M

m=0. Notice that since each process βm(t) is
bandlimited, each Rm(Dm) can be calculated by considering the
discrete-time sampled process βm(tj) and performing waterfilling
over time [3], that is, Rm(Dm) is given by:

Dm(θm) = 1
2π

� π

−π
min[θm, Sβm(ω)] dω

Rm(θm) = 1
4π

� π

−π
max � 0, log � Sβm (ω)

θm

� � dω
(6)

where θm ∈ [0, Sβm(0)] is the waterfilling parameter, and ω de-
notes the discrete-time angular frequency. Performing this calcula-
tion, we get the following parameterized expression for Rm(Dm):

Dm(φm) = Amcm
π

� arctan � π
cm

� + φm

1+φ2
m

− arctan(φm) �
Rm(φm) = cm

π
(φm − arctan(φm))

for 0 ≤ φm ≤ π
cm

Dm(φm) = Am
1+φ2

m

Rm(φm) = 1
2

log � (1+φ2
m)c2m

c2m+π2
� + 1 − cm

π
arctan � π

cm

�
for φm ≥ π

cm

where φm = � Am−θm
θm

, and the parameters Am and cm are as

defined in (3). Using this, we can show the following Theorem:

Theorem 1 The Rc(D) function is given by:

Dc(η) =
1

2

2M�
m=0

Dm(fm(η)), Rc(η) =

2M�
m=0

Rm(fm(η))

where fm(η) =
√

2Amη − 1 and η ≥ min{0≤m≤2M} 1
2Am

.
Proof: See [4].

5. RATE DISTORTION FOR LOCAL CODING

5.1. Rs-i(D) Function for Spatially Independent Coding

First, we consider the case where each sensor (independently from
the other sensors) at its position xn = 2Ln/(2M+1) observes the
temporal process T (xn, t), encodes it by optimally exploiting the
temporal correlation, and transmits the encoded process to the BS.
It can be shown that the original temperature T (x, t) is completely
determined by the spatial samples according to:

T (x, t) =
2M�
n=0

T (xn, t)fn(x), (7)

where fn(x) = 2
2M+1 � 1

2
+ � M

m=1 � cos � mn 2π
2M+1

� cos(λmx)+

sin � mn 2π
2M+1

� sin(λmx) � � . Receiving the quantized spatial

samples of the temperature process, the BS reconstructs an esti-
mate �T (x, t) using (7). We call Rs-i(D) the rate distortion func-
tion corresponding to this scenario. Since it can be shown that
the family {fn(x)}2M

n=0 satisfies orthogonality, and because of the
constraint of the source coding to be performed locally, it follows
that Ds-i = 1

2M+1
� 2M

n=0 Dn and Rs-i = � 2M
n=0 Rn, where Dn is

the MSE per second associated to the temporal process T (xn, t)
and Rn is the rate used by the encoder of the sensor located at po-
sition xn. Notice that the power spectral density of each locally
observed process T (xn, t) does not depend on the location xn.
Let S(ω) denote this power spectral density. The rate distortion
function Rs-i(D) is then given by the following Theorem:

Theorem 2 The Rs-i(D) function is given by:

Ds-i(θ) =
1

2π 	
π

−π

min[θ, S(ω)] dω

Rs-i(θ) =
2M + 1

4π 	
π

−π

max � 0, log � S(ω)

θ � 	 dω

where S(ω) = 1
2

A0c20
ω2+c20

+ � M
m=1

Amc2m
ω2+c2m

, |ω| ≤ π and θ ∈
[0, S(0)] is the waterfilling parameter [3].

Proof: See [4].
It is important to note that Rs-i(D) > Rc(D) because it can

be shown that the spatial vector of temperature samples � (t) has
a non-diagonal correlation matrix (see [4] for details).

5.2. Rst-i(D) for Spatially-Temporally Independent Coding

In addition to the constraint of local processing, we now also con-
strain each sensor to encode the observed time samples separately,
disregarding the correlation over time. We call Rst-i(D) the rate-
distortion function for this scenario. Notice that in this case we are
constrained to perform quantization only on one temporal sam-
ple at a time, and thus, for any optimal entropy-constrained one-
dimensional quantizer, there is a quantization shaping loss [3]. The
following Theorem directly follows:

Theorem 3 For the scenario of spatially and temporally indepen-
dent coding, the achievable Rst-i(D) function is characterized by:

(2M+1)RG(D) ≤ Rst-i(D) ≤ (2M+1) � RG(D) +
1

2
log � πe

6
� �

where RG(D) = 1
2

max � 0, log � σ2

D
� � , σ2 = 1

π

� π

0
S(ω) dω is

the variance of each sample, and S(ω) is as given in Theorem 2.

6. DISTRIBUTED PREDICTION-BASED CODING

In this section, we consider two prediction based systems.
In the first system, we assume that there is a perfect feedback
channel from the BS to the sensors, that is, the BS can transmit
at an infinite rate. Over time, the system works by sampling at
the temporal Nyquist rate, which under our assumptions is 1. The
overall processing is illustrated in Fig. 2. Given an estimate of the
temperature vector �� (tj) = [ �T (x0, tj), . . . , �T (x2M , tj)]

T at time
tj , the BS computes a temporal prediction �� (tj+1). Notice that
since �� (t) = 2

2M+1
� T �� (t), we only need to get each prediction�βm(tj+1), m = 0, . . . , 2M . In order to perform this prediction,
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Ê(x2M , tj)

Sensors Base Station

Fig. 2. DPCM based system with feedback from BS.
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we make use of the Green’s Theorem for the heat equation [1],
which, applied to our system, establishes that if �� (tj) were the
actual vector at time tj , then �� (tj+1) = � �� (tj+1), where each
component is given by:

�βm(tj+1) = �βm(tj)e
−cm+

α

κ
e−cm �

1

0

gm(tj+τ )ecmτ dτ (8)

The first term in (8) corresponds to a diffusion of the current state
�βm(tj), and the second one corresponds to an innovation term,
which involves the source process gm(t) affecting the system dur-
ing the interval [tj , tj+1]. Our approach is to consider as pre-
diction the first term, that is, �βm(tj+1) = �βm(tj)e

−cm , m =
0, . . . , 2M . Once this prediction is performed, the BS obtains
the prediction for the temperature vector �� (tj+1) = � �� (tj+1),
and sends to the n-th sensor the corresponding predicted value

�T (xn, tj+1). Then, at time tj+1, the n-th sensor reads the real
temperature value T (xn, tj+1) and quantizes the prediction error
E(xn, tj+1) = T (xn, tj+1) − �T (xn, tj+1), getting the quan-
tized output �E(xn, tj+1) = Q(E(xn, tj+1)), where Q denotes
a uniform scalar quantizer. Next, all the sensors send their quan-
tized prediction errors to the BS, which reconstructs each temper-
ature value as �T (xn, tj+1) = �T (xn, tj+1) + �E(xn, tj+1). Then,
the BS starts performing prediction again and the whole process
is repeated. Thus, the overall system behaves as a closed-loop
DPCM [5] with centralized prediction at the BS. It can also be
shown that the prediction given by the first term in (8) is the opti-
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Fig. 4. Comparison at low-to-middle rates for Gm = 1, m =
1, . . . , M , L = 0.1, M = 20, and the material is silver.

mal 1-tap LMMSE discrete-time prediction filter and that the opti-
mal (infinite-length) prediction filters provides a similar prediction
gain (see [4] for details).

In the second system, feedback from BS is not allowed and
the n-th sensor, independently, performs a closed-loop DPCM sys-
tem by predicting over time and where the corresponding observed
sampled process T (xn, tj) has a PSD S(ω) which is given as in
Theorem 2, ∀ n = 0, . . . , 2M . Again, it can also be shown [4]
that the optimal 1-tap LMMSE filter provides a prediction gain
very close to that of the optimal filter.

Fig. 3 shows the different analytical rate-distortion curves at
high rates (see [4] for details), and Fig. 4 shows the performance
obtained by simulation for both DPCM systems. For comparison,
we also show Rc(D), Rs-i(D) and Rst-i(D) in Fig. 3-4, where in
Fig. 4, the curve corresponding to Rst-i(D) has been also obtained
by simulation with the same uniform scalar quantizer used for the
DPCM systems. As expected, the local DPCM system provides
better performance than Rst-i(D). On the other hand, the DPCM
system with centralized prediction, since it makes use of temporal
information from all the sensors, is superior to the local DPCM
system. However, the DPCM system with centralized prediction
is still inferior to Rs-i(D) which involves infinite complexity (al-
though the difference is less than the quantization shaping gain).

Remark: In [4], it is shown that it is possible to design an ap-
propriate (Wyner-Ziv) nested code by using as side information
the (spatial-temporal) physics-based predictions made at the BS,
so that each sensor only needs to transmit cosets. Notice that each
T (xn, tj) is correlated with the predicted vector �� (tj). Thus, this
is a Wyner-Ziv problem with multiple side-information (2M + 1
predictions). This scheme avoids the need of feedback from BS.

7. REFERENCES
[1] J. V. Beck, K. D. Cole, A. Haji-Sheikh and B. Litkouhi. Heat Conduc-

tion Using Green’s Functions, W. .J. Minkowycz and E. M. Sparrow,
Eds., Hemisphere Publishing Corporation, 1992.

[2] S. Pradhan. Distributed Source Coding Using Syndromes (DISCUS).
PhD Thesis, University of California, Berkeley, 2001.

[3] T. Berger. Rate Distortion Theory. Prentice-Hall, 1971.

[4] B. Beferull-Lozano, R. L. Konsbruck and M. Vetterli. Rate-Distortion
and Communication for Physics Based Distributed Sensing. In prepa-
ration to be submitted to IEEE Trans. on Inf. Theory.

[5] N. S. Jayant and P. Noll. Digital Coding of Waveforms. 1984.

III - 916

➡ ➠


