
PROVIDING COMMON I/O CLOCK FOR WIRELESS DISTRIBUTED PLATFORMS

D. Budnikov, I. Chikalov, S. Egorychev

Intel Labs, Intel Corporation
30 Turgenev St, Nizhny Novgorod, Russia

I. Kozintsev, R. Lienhart

Intel Labs, Intel Corporation
2200 Mission College Blvd, Santa Clara

ABSTRACT
We propose a novel synchronization scheme for distributed audio-
video input and output on heterogeneous general purpose comput-
ing (GPCs) such as laptops, tablets, PDAs, smart phones, audio
recorders, and camcorders. These devices typically possess sen-
sors such as microphones and possibly cameras, and actuators such
as loudspeakers and displays. In order to combine them wirelessly
into a distributed array signal processing system, it is necessary
to provide relative time synchronization to sensors and actuators.
In this work we propose a setup and an algorithm to synchronize
input and output for a network of distributed multi-channel audio
sensors and actuators connected to GPCs. IEEE 802.11 wireless
network is used to deliver the global clock to distributed GPCs,
while the interrupt mechanism is employed to distribute the clock
between I/O devices. Experimental results demonstrate a precision
in A/D D/A synchronization precision better than 50 µs (a couple
of samples at 48 kHz).

1. INTRODUCTION

Arrays of audio/video sensors and actuators such as microphones,
cameras, loudspeakers and displays along with array processing al-
gorithms offer a rich set of new features for emerging applications.
Until now, array processing required expensive dedicated multi-
channel I/O cards as well as expensive high-throughput computing
systems due to the requirement to process all channels on a single
machine. Recent advances in mobile computing and communi-
cation technologies, however, suggest a novel and very attractive
platform for implementing these algorithms. Students in class-
rooms and co-workers at meetings are nowadays accompanied by
several mobile computing and communication devices with audio
and video I/O capabilities onboard such as laptops, PDA’s, and
tablets. In addition, high-speed wireless network connections, like
IEEE 802.11a/b/g, are available to network those devices. Such
ad-hoc sensor/actuator networks can enable emerging applications
that include multi-stream audio and video, smart audio/video con-
ference rooms, meeting recordings, automatic lecture summariza-
tion, hands-free voice communication, speech enhancement and
object localization. No dedicated infrastructure in terms of the
sensors, actuators, multi-channel interface cards and computing
power is required. Multiple GPCs along with their sensors and
actuators co-operate on providing transparent synchronized I/O.
However, there are several important technical and theoretical prob-
lems to be addressed before the idea of using those devices for ar-
ray DSP algorithms can materialize in real-life applications. One
of the most important problems is to provide a common reference
time to a network of distributed computers and their I/O channels.

To illustrate the importance of time synchronization we im-
plemented a Blind Source Separation (BSS) algorithm published

in [1]. In the simplest setting two sound sources are separated us-
ing the input of two microphones, each connected to a different
laptop. However, without synchronization of A/Ds the BSS al-
gorithm failed to perform separation. Figure 1 demonstrates how
a difference of only a few Hz in audio sampling frequency be-
tween two channels (laptops) impacts source separation. On the
x-axis the sampling difference in Hz between two audio channels
at about 16 kHz is shown against the achieved signal separation
gain by BSS on the y-axis. As can be seen in Figure 1, a difference
of only 2 Hz at 16 kHz reduces the signal separation gain from 8.5
dB to about 2 dB only. In real life the difference in sampling fre-
quency can be even higher as we illustrate in Table 1. BSS is not
the only algorithm that is extremely sensitive to sampling synchro-
nization. Other applications that require similar precision of time
synchronization between channels are acoustic beamforming and
3D audio rendering.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Sampling rate difference [Hz]

A
ve

ra
ge

 g
ai

n
[d

B
]

Fig. 1. Sensitivity of acoustic source separation performance to
small sample rate differences. Channel 1 is assumed to sample
at 16 kHz, while channel 2 is assumed to sample at 16000+x Hz.
Signal separation gain is calculated for the Blind Source Separa-
tion algorithm in [1].

The problem of time synchronization in distributed computing
systems has been discussed extensively in the literature in the con-
text of maintaining clock synchrony throughout large geographic
areas. Each process exchanges messages with its peers to deter-
mine a common clock. Seminal works have been reported in [2]
and [3]. However, the results provided there can not be applied
directly to our problem, since the precision of time synchroniza-
tion is too low. NTP, the Network Time Protocol, currently used
worldwide for clock synchronization in the best case achieves syn-

III - 9090-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

Dell IBM IBM IBM
Laptop Inspiron ThinkPad ThinkPad ThinkPad

7000 T20 600E T23
Sampling
rate, Hz 16001.7 16003.6 16001.8 16009.5

Table 1. Audio sampling rates of several laptops.

chronization in the range of milliseconds - 2 to 3 orders of mag-
nitudes higher than the microsecond resolution needed for our ap-
plication scenarios. The Global Positioning system (GPS) pro-
vides a much higher clock resolution. Its reported time is steered
to stay always within one microsecond of UTC (Coordinated Uni-
versal Time). GPS, however, only works reliably outdoors and
thus does not completely fit our application scenario. There is
also some recent work on synchronization in wireless sensor net-
works. In [4, 5], the reference-broadcast synchronization method
is introduced. In this scheme, nodes send reference beacons to
their neighbors based on a physical broadcast medium. All nodes
record the local time at which they receive the broadcasts (e.g., by
using the RDTSC instruction of the Pentium � processor family;
the Read-Time Stamp Counter counts clocktics since the processor
was started). Based on the exchange of this information, nodes can
translate each other’s clock. Although promising, the worst case
performance of 150µs reported in [4] is too high for our applica-
tion scenario. Our system is similar in spirit but we rely on addi-
tional processing to reduce errors in estimation of synchronization
parameters.

In general, all clock synchronization algorithms studied in the
literature only address the problem of providing a common clock
on distributed computing platforms. They do not address specifi-
cally for audio) how the I/O can be synchronized with the common
clock (we proposed one solution in [6]. In other words, even under
the assumption of a perfect clock on each platform, there is still
a mechanism required to link the common clock to the data in the
I/O channels. On a GPC this is a challenge in itself and we address
this problem in this paper.

2. PROBLEM FORMULATION AND SOLUTION

We tackle the problem of distributed I/O synchronization in two
steps: (1)(inter-platform) the local CPU clocks of the GPCs are
synchronized against a global clock, and (2) (intra-platform) I/O
is synchronized against the local clocks and thus also against the
global clock. In the experimental results, one of the CPU clocks
will arbitrarily be chosen as the global clock.

2.1. Problem Formulation

Each GPC has a local CPU clock (e.g., RDTSC). Let ti(t) de-
note the value of this clock on the i-th GPC at some global time
t. Assuming a linear model between the global clock and the local
platform clock, we get

ti(t) = ai(t)t + bi(t), (1)

where ai(t) and bi(t) are timing model parameters for the i-th
GPC. The dependency of the model parameters on global time t
approximates instabilities in the clock frequency due to tempera-
ture variations and other factors. In practice, these instabilities are

in the order of 10−5. In the rest of the paper we will omit explicit
time dependency to simplify our notations. Similarly, the sampling
times of audio A/Ds and D/As on GPC’s are approximated as:

τi(ti) = αi(ti)ti + βi(ti). (2)

In this model τi is simply the number of samples produced by
A/D (or consumed by D/A) converter since the start of the audio
I/O. Note that two different timing models are required since the
audio I/O devices on a typical PC platform have their own internal
clock that is not synchronized to other platform clocks such as the
RDTSC.

Given the two timing models above the problem that we ad-
dress in this paper can be formulated as finding t(τi) - the global
time stamp of audio sample τi. We separate it into two subprob-
lems: finding α̂i and β̂i such that ti(τi) = α̂iτi + β̂i (convert sam-
ple number to local time stamp with α̂ = α−1 and β̂ = −β/α)
and finding â and b̂ such that t(ti) = âti + b̂ (convert value of
local clock to global time with â = a−1 and b̂ = −b/a).

2.2. Timing relationships on GPC platform

In order to understand the inter and intra platform synchronization
methods proposed in this work we briefly describe the operations
and timing relationships on a typical GPC. Figure 2 shows a pro-

AP
Network

card
DriverAPICmedium

OS buffers

D
M

A

OS

IRQ ISR

UserApp

dprop dhw disr

UserApp OSOS buffers

Sound card

D
M

A

APIC DriverIRQ ISR

dhw disr

CPU

Control

Mic

Data

CPU

Fig. 2. Network (top part) and audio (bottom part) data and control
flows on on a typical GPC platform.

cessing diagrams of networking and audio I/O. Both I/O operations
have a very similar structure that can be described by the following
sequence of actions (only input path is described):

1. Incoming data is received and processed by a hardware de-
vice, and eventually is put into a Direct Memory Access
(DMA) buffer. This is modeled in Figure 2 by the delay
dhw, which is approximately constant for similar hardware.

2. The DMA controller transfers the data to a memory block
allocated by the system and signals this event to the CPU
by an Interrupt ReQuest (IRQ). This stage introduces vari-
able delay due to memory bus arbitration between different
agents (i.e., CPU, graphics adapter, other DMA’s).

III - 910

➡ ➡

3. The interrupt controller (APIC) queues the interrupt and
schedules a time slot for handling. Because APIC is han-
dling requests from multiple I/O devices this stage intro-
duces variable delay with standard deviation of around 6
ms and the maximum deviation of 30 ms. Both previous
stages are modeled by disr in Figure 2.

4. The Interrupt Service Routine (ISR) of the device driver is
called, and the driver sends notification to the Operating
System (OS).

5. The OS delivers a notification and data to the user appli-
cation(s). This stage has to be executed in a multitasking
software environment and this leads to significant variable
delays that depend on CPU utilization and many other fac-
tors.

In summary, data traverses multiple hardware and software
stages in order to travel from an I/O device to the CPU and back.
The delay introduced by the various stages is highly variable mak-
ing the problem of providing a global clock to the GPCs and dis-
tributing it to I/O devices very challenging. It is advantageous to
perform synchronization as close to hardware as possible, there-
fore our solution is implemented at the driver level (during ISR)
thus avoiding additional errors due to OS processing.

2.3. Providing global clock (inter-platform synchronization)

For the synchronization of CPU clocks over a wireless network we
propose to use a series of arrival times of multicast packets sent by
the wireless access point (AP). In our current approach we imple-
ment a pairwise time synchronization with one node chosen as the
master (say t(t0) = t0). All other nodes (clients) are required to
synchronize their clocks to the master 1. A similar approach was
also suggested in [4, 5]. Our solution, however, extends it by intro-
ducing additional constraints on the timing model. In order to pro-
vide a global clock to distributed platforms that is useful to several
applications (e.g. joint stream processing and distributed compu-
tations) we impose the clock monotonicity condition to make sure
that the global clock is monotonically increasing during model pa-
rameter adaptation. In addition we smooth the clock model (ai

and bi in equation (1)) variation by limiting the magnitude of its
updates.

The algorithm consists of the following steps:

1. AP sends next beacon packet.

2. Master node records its local time of packet arrival and dis-
tributes it to all other nodes.

3. Client nodes record both their local times of arrival of bea-
con packets from AP, and the corresponding times received
from the master.

4. Clients update local timing models based on the set of local
timestamps and corresponding master timestamps.

Let us assume that in Figure 2 the packet j arrives to multiple
platforms approximately at the same global time corresponding to
local clocks tj

i (dprop ≈ 0). The set of observations available on
the platforms consist of pairs of timestamps (t̃j

0, t̃
j
i). From Fig-

ure 2 we have t̃j = tj + dhw + disr (we omitted dependency on
i) that we further model as t̃j = tj + d + n. In this approxima-
tion d models all constant delay component and n represents the

1A more complex approach of performing joint timing synchronization
is potentially more accurate.

stochastic component. Given the set of observations (t̃j
0, t̃

j
i) we

are required to estimate the timing model parameters âi and b̂i for
all slave platforms. In our experiments a window of 3 minutes is
used to estimate current values of âi and b̂i using the least trimmed
squares (LTS) regression [7]. LTS is equivalent to performing least
squares fit, trimming the observations that correspond to the largest
residuals (defined as the distance of the observed value to the linear
fit), and then computing a least squares regression model for the re-
maining observations. Figure 3 shows comparison of quantiles of
residuals with quantiles of normal distribution and Figure 4 plots
the histogram of residuals. The distribution appears to be close to
Gaussian except for the presence of a few outliers (see Figure 3)
that do not fit into a normal distribution. The trimming step is
specifically targeted to remove those outliers.

Fig. 3. Comparison quantiles of residuals with quantiles of the
normal distribution. Points away from the straight line are treated
as outliers and removed during regression.

Fig. 4. Histogram of residuals and the normal probability density
function.

III - 911

➡ ➡

2.4. Synchronizing audio to CPU clock (intra-platform syn-
chronization)

In order to synchronize the audio clock to the CPU clock we use a
similar approach as the one presented in the previous section. The
ISR of the audio driver is modified to timestamp the samples in the
OS buffer using the CPU clock to form a set of observation pairs
(t̃j

i , τ
j
i), where j now represents the index of an audio data packet.

Following our model in Figure 2 we have t̃j = tj + dhw + disr

(we omitted dependency on i) that we further represent as t̃j =
tj + d + n. Except for the fact that the τ j are available without
any noise (it is simply the number of samples processed!) we are
back to the problem of determining the linear fit parameters for
pairs of observations that we solved in the previous section using
the LTS method.

In summary, by using LTS procedure twice both local and
global synchronization problems are solved and the audio samples
can be precisely synchronized on the distributed GPCs.

3. EXPERIMENTAL RESULTS

The distributed test system was implemented with several off-the-
shelf laptops implementing Intel R©CentrinoTMMobile Technology
using the following software components (see also Figure 5): (a)
A modified WLAN card driver timestamps each interrupt, parses
incoming packets in order to find all master beacon frames, and
stores their timestamp values in a cyclic shared memory buffer.
The timestamp values as well as the corresponding message IDs
are further accessible through the standard driver I/O interface.
(b) A modified AC97 driver timestamps ISRs and calculates the
number of samples transmitted since the beginning of the audio
capture/playblack. The value pair is placed into a cyclic shared
memory buffer. (c) The synchronization agents are responsible
for synchronizing the distributed system. We have three types
of agents: the multicast server (MCS), the master synchroniza-
tion agent (SAM) and the slave synchronization agent (SAS). The
MCS periodically broadcasts beacon packets (short packets with
unique ID as the payload). The SAM and SASs use the modi-
fied WLAN driver to detect the beacons. The SAM periodically
broadcasts its recorded timestamps of beacon arrivals to the SAS
devices. Based on SASs’ recorded timestamps and the correspond-
ing SAM timestamps, each SAS calculates the clock parameter
to convert between the platform clock and the global clock. The
clock parameters are placed in shared memory for use by other ap-
plications. (d) The Synchronization API allows user applications
to retrieve the local clock value, access the clock parameters, and
convert between the platform and global clock. (e) The audio API
allows user applications to retrieve pairs of local timestamps and
sample numbers, as well as to convert global timestamp values to
sample numbers and vice versa. It also provides transparent syn-
chronized capture and playback.

Based on these components a distributed audio rendering sys-
tem was implemented with three laptops (see Figure 5). The first
laptop was used as the MCS. Modified AC97 and WLAN drivers
were installed on other two laptops. SAM was started on the
second laptop, while SAS were started on the third laptop. The
distributed system was instructed through the audio API to syn-
chronously playback a Maximum Length Sequence (MLS) signal
on the two synchronized laptops. The line-out signals of both lap-
tops were recorded by a multichannel soundcard. The measured
inter-GPC offset was at most 2 samples at 48 kHz (≤ 42 µs).

Fig. 5. Distributed audio rendering/capturing system setup

4. SUMMARY

We have proposed a general two-step solution to provide a com-
mon I/O clock for distributed platforms. In the first step, the CPU
clocks of the distributed GPCs are synchronized against each other
by using the wireless network. In the second step, each GPC is
modeled as a distributed system with multiple I/O devices inter-
connected to the main memory and CPU via shared buses and a
similar synchronization principle is applied. Our results show that
at any time the audio I/O offset between different GPCs can be
kept below 50 µs that enables usage of distributed GPCs for array
signal processing of audio and video.

5. REFERENCES

[1] C. Fancourt and L. Parra, “The coherence function in blind
source separation of convolutive mixtures of non-stationary
signals,” in Proc IEEE Workshop on Neural Networks for Sig-
nal Processing, 2001, pp. 303–312.

[2] L. Lamport and P.M. Melliar-Smith, “Synchronizing clocks in
the presence of faults,” JACM, vol. 32, no. 1, pp. 52–78, 1985.

[3] D. Mills, “Internet time synchronization: the network time
protocol,” IEEE Tran Comm, vol. 39, no. 10, pp. 1482–1493,
1991.

[4] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, “Clock syn-
chronization for wireless local area networks,” in IEEE 12th
Euromicro Conference on Real-Time Systems (Euromicro RTS
2000), 2000, pp. 183–189.

[5] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” in 5th Sympo-
sium on OS Design and Implementation, Dec 2002.

[6] R. Lienhart, I. Kozintsev, and S. Wehr, “Universal synchro-
nization scheme for distributed audio-video capture on het-
erogeneous computing platforms,” in Proc 11th ACM Conf on
Multimedia, 2003, pp. 263–266.

[7] P. J. Rousseeuw, “Least median-of-squares regression,”
JACM, vol. 79, pp. 871–880, 1984.

III - 912

➡ ➠

