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ABSTRACT

Three significant enhancements to time-domain adaptive 

decorrelation filtering (ADF) are proposed for effective separation 

and recognition of simultaneous speech sources in reverberant 

room conditions. The methods include whitening filtering on 

cochannel speech prior to ADF to improve condition of adaptive 

estimation, a novel block-iterative implementation of ADF to 

speed up convergence rate, and an integration of multiple ADF 

outputs through optimal post filtering.   Experimental data were 

generated by convolving TIMIT speech with acoustic path 

impulse responses measured in real acoustic environment, with a 

2m microphone-source distance and an initial target-to-

interference ratio of about 0 dB. The proposed methods are shown 

to have speeded up the convergence rate of ADF to a level 

feasible for online applications, and they have significantly 

improved target-to-interference ratio and accuracy of phone 

recognition.

1. INTRODUCTION

Blind source separation of simultaneous speech signals has been 

an area of active research in recent years. Among many 

approaches, time-domain adaptive decorrelation filtering (ADF) 

[1,2,3] and frequency-domain independent component analysis 

(ICA) [4,5,6] are heavily studied.  The performance of speech  

source separation is known to depend on conditions of room 

reverberation, locations of sources and microphones, the 

properties of the sources, etc. *

The time-domain ADF method, when evaluated under favorable 

conditions, was able to deliver large gains in signal-to-

interference ratio [2,3]. However, under unfavorable conditions of 

room reverberation and large source-microphone distance, ADF is 

very slow in convergence and delivers limited gain of target-to-

interference ratio (TIR).  The difficulty can be attributed to the 

ADF principle, the spectral characteristics of speech, and room 

reverberation.  In ADF, acoustic paths need to be modeled by 

finite-impulse response (FIR) filters in order to obtain correct 

solutions. The increased lengths of FIR filters with long acoustic 

paths make them less distinguishable from IIR filters. Further, in 

reverberant rooms, reverberation-induced long tails of impulse 

responses are inherently difficult to identify.  In speech, voiced 

sounds have strong low frequency components, which cause large 

spreads of eigenvalues in the correlation matrices of source 

speech as well as speech mixtures, and hence slow down 

* This work is supported in part by NSF under the grant NSF EIA 
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convergence rate of adaptive filtering algorithms.  Furthermore, in 

ADF no distinction is made between perceptually important and 

irrelevant spectral components of speech, and therefore the 

separation processing is not optimized for automatic speech 

recognition systems. 

In the current work, three significant enhancements to the time-

domain ADF approach are proposed for effective separation and 

recognition of simultaneous speech sources in reverberant 

acoustic conditions.  First, whitening filtering is performed on 

cochannel speech prior to ADF to improve its condition of 

adaptive estimation, where three whitening filtering methods that 

are motivated by spectral characteristics of speech are investigated. 

Second, a novel block-iterative implementation of ADF is made 

to speed up convergence for online speech source separation.  

Third, an optimal post filtering method is developed to integrate 

ADF outputs of multiple microphone pairs to further reduce 

reverberation noise and interference speech. Evaluation 

experiments were performed on phone recognition of separated 

speech by using a hidden Markov model (HMM) based speaker-

independent phone recognition system, with the source speech 

materials taken from the TIMIT database. The proposed 

techniques are shown to have significantly improved system 

performance in convergence rate, signal to interference ratio, and 

recognition accuracy. 

2. OVERVIEW OF ADF 

Assume that two microphones are used to acquire convolutive 

mixtures of two mutually uncorrelated source signals 

( ),js t 1, 2j and produce outputs ( )iy t , 1, 2.i  Denote the 

acoustic transfer function from the source j to the microphone i by 

( )ijH z . The cochannel environment is then modeled as
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                       (1) 

with ( ) ( ) / ( )ij ij jjF z H z H z . Define
( )t

ij
f to be length-N FIR filters 

of ( )ijF z  at time t. The output signals of the ADF system are then 

generated as
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where ( ) ( ) ( 1) ( 1)
T

j
y t y t y t y t Nj j j . By taking 

decorrelation of system outputs as the separation criterion, the 

filters can be adaptively estimated as 
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To ensure system stability, the adaptation gain is determined in [2] as

1 2

2
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2 2
( ( ) ( ))y y

t
N t t

                      (4) 

where 0 1 , and 
1

2
( )y t and

2

2
( )y t are short-time energy 

estimates of inputs. The outputs ( ),iv t 1, 2i  converge to 

linearly transformed source signals ( ),is t 1, 2i  [1,2,3]. A block 

diagram of the source mixing and separation systems is shown in 

Fig. 1.

Figure 1 Block diagram of source mixing and separation systems

3. THE EHANCEMENT METHODS 

3.1. Whitening Filtering  

The proposed whitening filtering operations include preemphasis, 

prewhitening, and inverse filtering based on long-term LPC 

analysis.  Preemphasis is a first-order high-pass filter in the form 
1

( ) 1P z z , with 1 , and it is commonly used in linear 

predictive coding of speech to compensate for the 6-dB per octave 

spectral tilt in voiced speech [7]. In prewhitening, long-term 

power spectral density of speech is measured and its inverse filter 

is designed to "whiten" speech spectral distribution. In the current 

work, an inverse filter is designed by an FIR filter of order 5 

based on the long-term speech power spectrum detailed in [8].  In 

long-term LPC analysis, short-time autocorrelation coefficients 

are averaged from offline training speech data and a Pth order LPC 

analysis is carried out. The inverse filter of LPC is then used as 

the whitening filter.
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Figure 2 Frequency responses of whitening filters

In Fig. 2, frequency responses are shown for the whitening filters 

of preemphasis ( 1 ), prewhitening, and a 3rd order LPC 

inverse filter. The three filters have similar 6 dB per octave high-

pass characteristics in the range of 1 KHz to 5 KHz, while the 

degrees of low-frequency attenuation are different.

3.2. Block-Iterative ADF 

The adaptive filter estimation and source separation as defined in 

Eqs. (3) and (2) for ADF are performed sample by sample. In the 

block iterative implementation, input speech data are divided into 

size-B blocks, i.e., , ,[ , 0,1, , 1],i n i nB tY y t B 1, 2i and

0,1,n . Within each block n, adaptive estimation and 

separation are iteratively performed by Eqs. (2) and (3), where the 

filter estimates obtained at the end of the data block in the rth

iteration, ( 1)
( )

12
,

B
f n r and ( 1)

( )
21

,
B

f n r , are used as the initial filter 

estimates at the  r+1th iteration, (0)
( )

12
, 1f n r and (0)

( )
21

, 1f n r . The 

relative change of filter estimates between two successive 

iterations is computed as 

( 1) ( 1) ( 1) ( 1)

12 12 21 21
, 1 ( 1) ( 1)
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B B B B
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C
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       (5) 

If , 1n rC  , then the estimation terminates for the block and 

ADF is moved on to next block n+1. The initial filter estimates for 

the block n+1 is set as the final filter estimates of the block n.

The block length B and the termination threshold  are important 

implementation parameters. A block should be sufficiently long 

such that different phonetic sounds are included within each block, 

since second-order statistic methods of blind source separation 

such like ADF do not guarantee correct solutions for stationary 

signal sources [4]. Obviously, block iterative estimation also 

induces a buffering delay that is determined by the block length.  

Therefore, the choice of B is a tradeoff between accuracy and 

delay. In the extreme case, block length is set as data sequence 

length, and batch iterative estimation is resulted. The threshold 

is a tradeoff between convergence rate and computation load. A 

small calls for more iterations that speeds up convergence but 

incurs more computation, and a large calls for fewer iterations 

and hence slower convergence and less computation. It was found 

experimentally that running too many iterations within a block 

could cause instability.  In this work, the threshold was chosen 

as 0.0005, and the iteration number r was also hard limited to be 

between 3 and 8. 

3.3. Post Filtering 

The proposed optimal post filtering is based on minimum mean 

squared error estimation [9,10]. Assume in a K microphone-pair 

system K pairs of ADF outputs are available, i.e., 
( ) ( )

1 2{ ( ), ( )}
k k

v t v t , 1, 2, ,k K . Further assume that source 1 is 

the target and (1)
1 ( )v t  is the reference. Then ( )

1 ( )
k

v t ’s are filtered to 

match (1)
1 ( )v t  by

( ) ( ) ( )
1 1 1( ) ( ) ( )

k k k
V f H f V f , with 

( ) (1) ( ) ( )
1 1 1 1

( )
1 ( ) ( ) ( )k k k

k

v v v v
H f P f P f , where the numerator and  the 

denominator are cross and auto power spectral density (psd), 

respectively. The enhanced target signal is taken as 
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For online applications, the filters are recursively estimated. 

Specifically, the psds and filters are estimated by utilizing two 

forgetting factors 
1 2, as

' 1 '( ) ( ) ( ) ( )
1 1 1 1

'( ) ( )

1 1 1

( , ) ( , ( 1) )

*
(1 ) ( , ) ( , ))       (6)

k k k k
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P f mT P f m T
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( ) ( )
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2 ( ) (1) ( ) ( )
1 1 1 1

( , ) ( , ( 1) )

(1 ) ( , ) ( , ) (7)

k k

k k k
v v v v

H f mT H f m T

P f mT P f mT

where T is the data window length for FFT analysis, 1'k  or k,

and * denotes complex conjugation. The time-domain target 

signal is obtained by the standard overlap and add method. The 

forgetting factors 
1 2,  were experimental chosen as 0.999 and 

0.95 respectively, and T was chosen to have 2048 samples with 

2048 zeros padded before FFT. 

3.4. Integrated system for speech source separation 

The speech source separation system that integrates the three 

enhancement techniques is shown in Fig. 3 Three pairs of 

microphones provide inputs to three ADF modules, and the inputs 

are each filtered by a whitening filter. In online application or 

nonstationary environment, ADF should be implemented in the 

block iterative mode, otherwise a batch iterative mode can be used 

to achieve a higher TIR gain (see section 4.4). The ADF outputs 

are dewhitened  and the post-filtering module combines the target 

signals to generate an enhanced target signal which is then 

recognized by the ASR system.

4. EXPERIMENTS

4.1. Cochannel Condition and Data  

Cochannel speech data were generated based on acoustic paths 

measured in real acoustic environment (RWCP) [11], and the 

source speech materials were taken from the TIMIT database. In 

RWCP, a circular microphone array with a radius of 15 cm was 

used to capture speech signals of two sources. The speaker-to-

microphone distances were approximately 2 meters.  Three pairs 

of microphones on the circular array, as shown in Fig. 3, were 

used in the experiment reported here: 14 and 4, 15 and 3, 16 and 2.  

The pair 15 and 3 was also used for the condition of single 

microphone pair and the distance between the two microphones 

was 21 cm. The recording room had a reverberation time 

of [60] 0.3 secT . In the target speaker location, speech data of 

four speakers (faks0, felc0, mdab0, mreb0) were taken from the 

TIMIT database, each had ten sentences. In the jammer speaker 

location, speech data were randomly taken from the entire set of 

TIMIT sentences excluding those of the target speakers. Speech 

data were sampled at 16 KHz, and the ADF filter lengths were 

fixed as 400N .

Assume that the microphones at the locations 15 and 3 acquires 

speech mixture signals 1y , 2y , respectively. The input target-to-

interference ratio in iy , y
i

TIR , is defined as the energy ratio (dB) 

of the target component is  in iy  to the interference component

Figure 3  Proposed system for speech source separation

,js j i  in iy . The ADF output v
i

TIR  are defined accordingly. 

The initial conditions were 
1yTIR = 3.01 dB and 

2yTIR = -2.18 dB.

4.2. Evaluation of ADF Convergence Rate 

The effects of prewhitening and block-iterative implementation on 

ADF convergence rate were evaluated by normalized filter 

estimation error on
( )

12

t
f and

( )

21

t
f . Fig. 4 hows three cases: 

baseline batch ADF, batch ADF with prewhitening, and block-

iterative ADF with prewhitening.  It is observed that prewhitening 

significantly speeded up convergence, and the block iterative 

implementation produced yet another significant improvement.
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Figure 4 Comparison of convergence rate

4.3. Target-to-Interference Ratio

A comparison of TIRs with and without prewhitening processing 

is shown in Table 1, where to enable meaningful comparisons 

both the input and output speech were filtered by the prewhitening 

filters in calculating the TIRs.  It is observed that the prewhitening 

filtering produced significantly faster improvement to output TIRs. 

The whitening weighted TIR data also better correlate with speech 

intelligibility since otherwise low frequency components that are 
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quality rather than intelligibility indicators of speech would 

dominate the TIR values. 

Table 1.  Comparison of target-to-interference ratios (dB)

Estimation Baseline Prewhitening 

Passes TIR v1 TIR v2 TIRv1 TIRv2

1 7.4 0.7 12.3 3.7 

2 10.2 5.1 16.3 10.1 

3 11.7 7.3 16.7 9.1 

4 12.7 8.4 17.7 11.5 

5 13.4 9.4 17.8 11.6 

6 14.0 10.0 17.9 11.7 

7 14.3 10.2 17.9 11.7 

4.4. Phone Recognition Accuracy 

Speech feature representation included 13 cepstral coefficients, 

and their first and second-order time derivatives. There were 39 

context-independent phone units, with each unit modeled by three 

emission states of HMM, and each state had a size-8 Gaussian 

mixture density. Phone bigram was used as "language model." 

Cepstral mean subtraction was applied to training and test data. 

Phone recognition accuracies of clean TIMIT target speech and 

the mixed speech were 68.9% and 29.1%, respectively. 

In Fig. 5 a comparison on phone recognition accuracy is made  

among the cases of (1) baseline batch ADF (2) batch ADF with 

preemphasis (3) batch ADF with prewhitening (4) block-iterative 

ADF with prewhitening, and (5) post filtering using three pairs of 

microphone data for each case of (1) through (4). Only one 

iteration pass was used for  the batch ADF methods in order to 

compare with the block iterative method. It is observed that 

whitening improved recognition accuracy over baseline where 

prewhitening is superior to preemphasis, block-iterative is 

superior to batch, and post-filtering yielded significant gains over 

the single-microphone-pair cases of (1) through (4).
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Figure 5 Phone recognition accuracies with one pass of ADF 

In Fig. 6 phone recognition accuracy results are shown for batch 

ADFs with one to ten iteration passes. The cases are baseline, 

preemphasis, prewhitening, and with and without post filtering for 

each case. Again, whitening filtering improved baseline, post 

filtering improved the case of single-microphone-pair. Through 

long iterations the batch methods achieved a higher level of 

recognition accuracy than the block-iterative method.
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Figure 6 Phone recognition accuracies with iterative batch ADF.

5. CONCLUSION 

The proposed techniques of whitening filtering, block-iterative 

implementation of ADF, and post filtering are shown to be simple 

and yet very effective for online speech source separation. Phone 

recognition accuracy has been significantly improved as 

compared with the baseline ADF system, and the fast 

convergence behavior of the proposed system allows tracking of 

time-varying sound source locations in reverberant room 

conditions.
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