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ABSTRACT

In this paper we present a framework for multichannel blind signal
processing for convolutive mixtures, such as blind source separa-
tion (BSS) and multichannel blind deconvolution (MCBD). It is
based on the use of multivariate pdfs and a compact matrix no-
tation which considerably simplifies the representation and han-
dling of the algorithms. By introducing these techniques into an
information theoretic cost function, we can exploit the three fun-
damental signal properties nonwhiteness, nongaussianity, and non-
stationarity. This results in a versatile tool that we call TRINICON
(’Triple-N ICA for convolutive mixtures‘). Both, links to popular
algorithms and several novel algorithms follow from the general
approach. In particular, we introduce a new concept of multichan-
nel blind partial deconvolution (MCBPD) for speech which pre-
vents a complete whitening of the output signals, i.e., the vocal
tract is excluded from the equalization. This is especially interest-
ing for automatic speech recognition applications. Moreover, we
show results for BSS using multivariate spherically invariant ran-
dom processes (SIRPs) to efficiently model speech, and show how
the approach carries over to MCBPD. These concepts are also suit-
able for an efficient implementation in the frequency domain by
using a rigorous broadband derivation avoiding the internal per-
mutation problem and circularity effects.

1. INTRODUCTION

The task to perform blind signal processing on convolutive mix-
tures of unknown time series arises in several application domains,
a prominent example being the so-called cocktail party problem,
where we want to recover the speech signals of multiple speakers
who are simultaneously talking in a room. The room may be very
reverberant due to reflections on the walls, i.e., the original source
signals sq(n), q = 1, . . . , Q are filtered by a linear multiple input
and multiple output (MIMO) system before they are picked up by
the sensors. In the following, we assume that the number Q of
source signals sq(n) equals the number of sensor signals xp(n),
p = 1, . . . , P (Fig. 1).

We distinguish two classes of signal processing problems in
this scenario:

BSS for convolutive mixtures. In this approach, we want to
determine a MIMO FIR demixing filter which separates the signals
up to an arbitrary filtering and permutation by forcing the output
signals to be mutually independent.

Multichannel Blind Deconvolution. Here, in addition to the
separation, we want to recover the original signals up to an ar-
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Fig. 1. Setup for blind MIMO signal processing.

bitrary (frequency-independent) scaling and permutation, i.e., we
want to dereverberate the signals.

For the blind estimation of the coefficients, it has to be con-
sidered that the speech excitation is colored and non-stationary.
In addition, in MCBD, effectively, an inversion of (long and pos-
sibly non-minimum phase) room impulse responses is necessary.
However, using the multiple-input/output inverse theorem (MINT)
[1] any MIMO system H can exactly be inverted if hqp ∀ p, q ∈
{1, . . . , P} do not have common zeros in the z plane. Therefore,
in principle, there is a general solution to the MCBD problem by
using multiple microphones (According to our experience, 3 or 4
microphones are usually sufficient in real environments).

So far, the BSS problem has been mostly addressed for in-
stantaneous mixtures or narrowband approaches in the frequency
domain which adapt the coefficients independently in each DFT
domain, e.g., [2]-[5]. In the case of MCBD, many approaches
are either based on a whitening of the output signals (e.g., [6, 7]),
which is problematic for speech and audio applications like au-
tomatic speech recognition, or are rather heuristically motivated,
e.g., [8].

The aim of this paper is to present a unified treatment of BSS
and MCBD algorithms applicable for speech signals in real acous-
tic environments. We propose the use of multivariate models in
the cost function to capture the statistical description of the tem-
poral structure of the source signals. Generalizing the approach in
[9] allows the use of the cost function for both, BSS and MCBD,
and also leads to an improved solution for speech dereverberation.
Note that we consider here only time-domain algorithms. For the
general frequency-domain broadband approach, see [10, 11].

2. MATRIX NOTATION FOR CONVOLUTIVE
MIXTURES

To derive an algorithm for block processing of convolutive mix-
tures, we first need to formulate the convolution of the FIR demix-
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ing system of length L in the following matrix form [10]:

y(m, j) = x(m, j)W(m), (1)

where m denotes the block index, and j = 0, · · · , N − 1 is a
time-shift index within a block of length N , and

x(m, j) = [x1(m, j), . . . , xP (m, j)], (2)

y(m, j) = [y1(m, j), . . . , yP (m, j)], (3)

W(m) =

⎡
⎣

W11(m) · · · W1P (m)
...

. . .
...

WP1(m) · · · WPP (m)

⎤
⎦ , (4)

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)],(5)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)] (6)

=

P∑
p=1

xp(m, j)Wpq(m). (7)

D in (6) denotes the number of lags taken into account to exploit
the nonwhiteness of the source signals as shown below. Wpq(m)
denotes a 2L×D Sylvester matrix that contains all coefficients of
the respective filter:

Wpq(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0

. . .
...

... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1

. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
...

...
...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Note that this notation also allows a simple way to calculate the
demixing filters exactly according to MINT for a known mixing
system described by Sylvester matrices Hqp of the same structure
as shown above and suitably chosen matrix dimensions [1]:

C = HW ⇒ W = H−1C, (9)

where C denotes the corresponding system matrix from the sources
to the outputs, i.e., for exact dereverberation, we have C = I.

3. COST FUNCTION AND GENERAL OPTIMIZATION

3.1. Optimization Criterion

Different approaches exist to blindly estimate the demixing matrix
W for the above mentioned tasks by utilizing the following source
signal properties [2] which we all combine into an efficient and
versatile algorithm:
(i) Nongaussianity is exploited by using higher-order statistics
for independent component analysis (ICA). ICA approaches can
be divided into several classes. Although they all lead to similar
update rules, the minimization of the mutual information (MMI)
among the output channels can be regarded as the most general

approach for BSS [2]. To obtain an estimator not only allowing
spatial separation but also temporal separation for MCBD, we use
the Kullback-Leibler distance (KLD) [12] between a certain de-
sired joint pdf (essentially representing a hypothesized stochastic
source model) and the joint pdf of the actually estimated output
signals. The desired pdf is factorized w.r.t. the different sources
(for BSS) and possibly also w.r.t. certain temporal dependencies
(for MCBD) as shown below. The KLD is guaranteed to be posi-
tive [12], which is a necessary condition for a useful cost function.
(ii) Nonwhiteness is exploited by simultaneous minimization of
output cross-relations over multiple time-lags. We therefore con-
sider multivariate pdfs, i.e., ‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization
of output cross-relations at different time-instants. We assume er-
godicity within blocks of length N so that the ensemble average is
replaced by time averages over these blocks.

Based on the KLD, we now define the following general cost
function taking into account all three fundamental signal proper-
ties (i)-(iii):

J (m) = −
∞∑

i=0

β(i, m)
1

N

N−1∑
j=0

{log(p̂s,PD(y(i, j)))

− log(p̂y,PD(y(i, j)))} , (10)

where p̂s,PD(·) and p̂y,PD(·) are the assumed or estimated PD-
variate source model (i.e., desired) pdf and output pdf, respec-
tively. Furthermore, D is the memory length, i.e., the number of
time-lags to model the nonwhiteness of the P signals as above.
β is a window function with finite support that is normalized ac-
cording to

∑m

i=0
β(i, m) = 1 allowing for online, offline, and

block-online algorithms [11].

3.2. General Coefficient Update

It can be shown (after a somewhat tedious but straightforward
derivation) that by taking the natural gradient [2] of J (m) with
respect to the demixing filter matrix W(m) [10],

∆W ∝ WWH ∂J
∂W∗ , (11)

we obtain the following generic TRINICON-based update rule:

W(m) = W(m − 1) − µ∆W(m), (12)

∆W(m) =
2

N

∞∑
i=0

β(i, m)

N−1∑
j=0

W(i)yH(i, j)

· {Φs,PD(y(i, j)) −Φy,PD(y(i, j))} , (13)

with the desired score function

Φs,PD(y(i, j)) = −∂log p̂s,PD(y(i, j))

∂y(i, j)
(14)

resulting from the hypothesized source model (a factorization of
p̂s,PD(·) among the sources yields BSS, while a complete factor-
ization leads to the traditional MCBD approach), and the actual
score function

Φy,PD(y(i, j)) = −∂log p̂y,PD(y(i, j))

∂y(i, j)
. (15)
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4. SPECIAL CASES AND ILLUSTRATION

There are many interesting known and novel practical approxima-
tions within the framework. To begin with, we first consider algo-
rithms based on second-order statistics (SOS) as they are particu-
larly illustrative.

4.1. Realizations based on Second-Order Statistics

Here, the source models are simplified to seqences of multivariate
Gaussian functions described by PD × PD correlation matrices
R·· within the length-N signal blocks. This leads to the coefficient
update

∆W(m) = 2

∞∑
i=0

β(i, m)W(i)Ryy

{
R̂−1

ss − R̂−1
yy

}

= 2

∞∑
i=0

β(i, m)W(i)
{
R̂yy − R̂ss

}
R̂−1

ss (16)

4.1.1. Generic SOS-based BSS

The BSS variant of the generic SOS natural gradient update (16)
follows immediately by setting

R̂ss(i) = bdiagD R̂yy(i). (17)

The update (16) together with (17) was originally obtained inde-
pendently in [10] as a generalization of the cost function of [13]:

JSOS(m) =

∞∑
i=0

β(i, m)
{
log det R̂ss(i) − log det R̂yy(i)

}
.

(18)
In Fig. 2 the mechanism of (16) based on the model (17) is il-
lustrated. By minimizing JSOS(m), all cross-correlations for D
time-lags are reduced and will ideally vanish, while the auto-cor-
relations are untouched to preserve the structure of the individual
signals. This algorithms leads to very robust practical solutions

D

D

Each diagonal
represents
one time-lag

auto-correlation Ry1y1 cross-correlation Ry1y2

Fig. 2. Illustration of SOS-based BSS.

even for a large number of filter taps due to an inherent normal-
ization by the auto-correlation matrices, reflected by the inverse in
(16) of bdiagD R̂yy . Note that there are also efficient approxi-
mations of this algorithm [14],[15] with a reduced computational
complexity allowing already realtime operation on a regular PC
platform. Moreover, a close link has been established [10],[11] to
some popular frequency-domain algorithms [3],[4].

4.1.2. MCBD based on SOS

Traditionally, ICA-based MCBD algorithms assume i.i.d. source
models, e.g., [6, 7]. In the SOS case, this corresponds to a com-
plete whitening of the output signals by not only applying a joint
de-cross-correlation, but also a joint de-auto-correlation, i.e., R̂ss =

diag R̂yy over multiple time-instants, as illustrated in Fig. 4 (b).

4.1.3. MCBPD based on SOS

Especially for distant-talking automatic speech recognition (ASR),
there is a very strong need for speech dereverberation without in-
troducing artifacts to the signals. In ASR, certain features for the
actual recognition process are extracted from short signal blocks.
These blocks are generally much shorter than the reverberation
time in real environments. The resulting temporal ‘smearing’ often
significantly degrades the performance of large-vocabulary ASR.
On the other hand, it is known that ASR is relatively insensitive to
very short reverberation components due to the block-based fea-
ture extraction. Equations (13)-(15) inherently contain a statisti-
cal source model (signal properties (i)-(iii) in Sect. 3.1), expressed
by the multivariate densities, and thus provide all necessary re-
quirements for the MCBPD approach which allows to distinguish
between the actual speech production system, i.e., the vocal tract,
and the reverberant room (Fig. 3). Ideally, only the influence of the
room acoustics should be minimized. In the SOS case, the auto-

room (slowly time-varying)
to be equalized

vocal tract (rapidly time-varying)
to be preserved

excitation

Fig. 3. Illustration of the MCBPD principle.

correlation structure of the speech signals can be taken into ac-
count, as shown in Fig. 4 (c). While the room acoustics influences
all off-diagonals, the effect of the vocal tract is concentrated in the
first few lags around the main diagonal. These first off-diagonals
of R̂yy are now taken over into R̂ss. Alternatively, the structure
in Fig. 4 (c) may be approximated by small sub-matrices making
its handling somewhat more efficient. Note that there is a close
link to linear prediction techniques which gives guidelines for the
number of lags to be preserved. Experiments with a state-of-the-art
large-vocabulary speech recognizer (by Dragon Systems) confirm
the effectiveness of this approach by a significant improvement of
the word error rate for the consideration of 20-30 off-diagonals in
R̂ss at a sampling rate of 16kHz.

(a) BSS (b) MCBD (c) MCBPD

Fig. 4. Desired correlation matrices for BSS, MCBD, and
MCBPD.

4.2. Realizations based on Higher-Order Statistics

The general HOS approach (13)-(15) provides the possibility to
take into account all information that we possibly have on the sta-
tistical properties of the desired source signals. This provides an
increased flexibility and improved performance of BSS. Moreover,
the more accurate modeling of the desired source signals gives an
improved MCBPD.

To apply the general approach in a real-world scenario, an ap-
propriate multivariate score functions (14) and (15) have to be de-
termined. Fortunately, there is an efficient solution to this prob-
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lem by assuming so-called spherically invariant random processes
(SIRPs). The general form of correlated SIRPs of D-th order is
given with a properly chosen function fD(·) by [16]

p̂D(yp(i, j)) =
1√

πDdet(Rpp(i))
fD

(
yp(i, j)R

−1
pp (i)yH

p (i, j)
)

(19)
for the p-th channel. These models are representative for a wide
class of stochastic processes. Speech signals in particular can very
accurately be represented by SIRPs [16]. A great advantage aris-
ing from the SIRP model is that multivariate pdfs can be derived
analytically from the corresponding univariate pdf together with
the (lagged) correlation matrices. The function fD(·) can thus
be calculated from the well-known univariate models for speech,
e.g., the Laplacian density. Using the chain rule, the corresponding
score function (14) can be derived from (19), as shown in [9, 11]
in more detail.

The calculation of (15) becomes particularly simple in most
practical realizations by transforming the output pdf p̂y,PD(·) into
the corresponding multivariate input signal pdf using W which is
considered as a mapping matrix of a linear transformation. The
derivative of the input signal pdf vanishes as it is independent of
the demixing system. Note that in the extreme case of a full de-
convolution and i.i.d assumption, this approach boils down to the
traditional MCBD approach in [7] which is an improved version
of [6].

5. SIMULATION RESULTS

We conducted our experiments on BSS for convolutive mixtures
using speech signals from the TIMIT database convolved with im-
pulse responses of a real room with reverberation time T60 ≈ 150
ms. Note that this class of algorithms can cope with a long fil-
ter length (or reverberation time) due to the inherent normaliza-
tion property discussed in Sect. 4.1.1. The sampling rate was
fs = 16 kHz. We used a two-element microphone array with an
inter-element spacing of 16 cm. For the filter adaptation (offline)
we used both, the generic SOS algorithm in the time-domain, and
the generic HOS algorithm with SIRP model from the Laplacian
pdf. We chose the following parameters: L = 512, N = 1024,
D = 512 (note that N has to be chosen greater than D to get im-
proved estimates in the HOS case). To evaluate the performance,
as shown in Fig. 5 we used the signal-to-interference ratio (SIR),
defined as the ratio of the signal power of the target signal to the
signal power from the jammer signal. For Fig. 5, the stepsizes
have been maximized up to the stability margin.

6. CONCLUSIONS

We presented a versatile framework for blind signal processing ex-
ploiting all three fundamental statistical source properties in a rig-
orous way. There are various interesting links to both, known and
novel time-domain and frequency-domain algorithms. An efficient
realization for blind source separation and dereverberation incor-
porating a SIRP-based model has been described.
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