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ABSTRACT

Blind source separation (BSS) for convolutive mixtures can
be efficiently achieved in the frequency domain, where inde-
pendent component analysis is performed separately in each
frequency bin. However, frequency-domain BSS involves
a permutation problem, which is well known as a difficult
problem, especially when the number of sources is large.
This paper presents a method for solving the permutation
problem, which works well even for many sources. The suc-
cessful solution for the permutation problem highlights an-
other problem with frequency-domain BSS that arises from
the circularity of discrete frequency representation. This pa-
per discusses the phenomena of the problem and presents a
method for solving it. With these two methods, we can sep-
arate many sources with a practical execution time. More-
over, real-time processing is currently possible for up to
three sources with our implementation.

1. INTRODUCTION

Blind source separation (BSS) [1] is a technique for esti-
mating original source signals solely from their mixtures
at sensors. Its potential audio signal applications include
teleconferences, voice control and hearing aids. In such ap-
plications, signals are mixed in a convolutive manner with
reverberations. This makes the BSS problem much more
difficult than the instantaneous mixture problem. Let us
formulate the convolutive BSS problem. Suppose that N
source signals sk(t) are mixed and observed at M sensors

xj(t) =
∑N

k=1

∑
l hjk(l)sk(t − l),

where hjk(l) represents the impulse response from source
k to sensor j. The goal is to obtain N output signals y i(t),
each of which is a filtered version of a source s i(t). If we
have enough sensors (M ≥ N ), a set of FIR filters wij(l)
of length L is typically used to produce separated signals

yi(t) =
∑M

j=1

∑L−1
l=0 wij(l)xj(t − l)

at the outputs, and independent component analysis (ICA)
[2, 3] is generally used to obtain the FIR filters wij(l). We
can classify the BSS methods into two categories based on
how we apply ICA for convolutive mixtures.

The first is time-domain BSS, where ICA is applied di-
rectly to the convolutive mixture model [4, 5]. It provides
good separation once the algorithm converges, and is easy

to extend to more than two sources. However, ICA for con-
volutive mixtures is not so simple as ICA for instantaneous
mixtures, and computationally expensive for long filters.

The other approach is frequency-domain BSS, where
complex-valued ICA for an instantaneous mixture is applied
in each frequency bin [6–15]. The merit of this approach is
that the ICA algorithm can be performed separately at each
frequency, and the convergence of each ICA is fast. How-
ever, the permutation ambiguity of an ICA solution becomes
a serious problem. We need to align the permutation in each
frequency bin so that a separated signal in the time domain
contains frequency components from the same source. This
is the well-known permutation problem. Although various
methods have been proposed for the permutation problem
[6–10], most of them are applicable only for two sources
or their performance deteriorates as the number of sources
increases. Therefore, most of the published results with
frequency-domain BSS were for only two sources.

This paper presents a frequency-domain BSS method
that performs well even for more than two sources. The
first key technique relates to solving the permutation prob-
lem and is discussed in Sec. 3. However, just solving the
permutation problem does not provide good separation per-
formance. We need to solve another problem that origi-
nates with the circularity of discrete frequency representa-
tion. This problem is not well known since it is not serious
in a two-source case but it becomes serious as the number
of sources increases. We discuss the phenomena and the
reason for this problem and present an approach for its so-
lution in Sec. 4. The effectiveness of the presented methods
is shown by experimental results for up to four sources in
Sec. 5. We also report the result of real-time processing for
three sources, where the system can track moving sources.

2. FREQUENCY-DOMAIN BSS

This section describes frequency-domain BSS whose flow
is shown in Fig. 1. First, time-domain signals xj(t) at sen-
sors are converted into frequency-domain time-series sig-
nals Xj(f, t) by short-time Fourier transform (STFT), where
t is now down-sampled with the distance of the frame shift.
Then, to obtain the frequency responses W ij(f) of filters
wij(l), complex-valued ICA Y(f, t) = W(f)X(f, t) is
solved, where X(f, t) = [X1(f, t), . . . , XM (f, t)]T , Y(f, t)
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Fig. 1. Flow of frequency-domain BSS

= [Y1(f, t), . . . , YN (f, t)]T and W(f) is an N × M sep-
aration matrix whose elements are Wij(f). Any complex-
valued ICA algorithm can be used in this scheme.

The ICA solution in each frequency bin has permuta-
tion and scaling ambiguity: even if we permute the rows of
W(f) or multiply a row by a constant, it is still an ICA so-
lution. The permutation ambiguity should be fixed so that
Yi(f, t) at all frequencies correspond to the same source
si(t). Thus, the rows of W(f) are permuted W(f) ←
P(f)W(f) by a permutation matrix P(f) obtained by a
method, such as those discussed in Sec. 3. The scaling am-
biguity is solved by the frequency-domain version of the
minimal distortion principle, W(f) ← diag[W−1(f)]W(f),
to make Yi(f, t) as close to Xi(f, t) as possible [4, 8]. Then,
we solve the circularity problem by the spectral smoothing
described in Sec. 4. Finally, time-domain separation filters
wij(l) are obtained by applying inverse DFT to W ij(f).

3. THE PERMUTATION PROBLEM

Various methods have been proposed for solving the per-
mutation problem. Let us begin with the direction of arrival
(DOA) approach, where the DOAs of source signals are es-
timated to align permutations. The methods described in
[9, 10] plot the directivity patterns formed by a separation
matrix, and estimate the direction of a source as the mini-
mum of a directivity pattern. In practice, the methods only
work for two sources since the directivity patterns become
too complicated to analyze for more than two sources.

We have proposed another way of estimating directions
that works for any number of sources [11]. It first calcu-
lates the inverse W−1(f), or the Moore-Penrose pseudoin-
verse W+(f) if N < M , of the separation matrix W(f)
obtained by ICA. Then, the direction θ i of a source corre-
sponding to the i-th row of W(f) is calculated by

θi = arccos
arg( [W−1]ji / [W−1]j′i)

2πfc−1(dj − dj′ )
, (1)

where c is the propagation velocity and dj is the position of
sensor j. The scaling ambiguity of the ICA solution is elim-
inated by taking the ratio [W−1]ji / [W−1]j′i of two ele-
ments from the same column. Figure 2 shows DOA estima-
tions for mixtures of four sources obtained with (1). We see
that directions are well estimated and a permutation matrix
P(f) can be obtained by sorting the estimated directions at
each frequency. However, at some frequencies (especially
low frequencies), estimations are not obtained or are inaccu-
rate. Therefore, the DOA approach alone does not provide
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Fig. 2. DOA estimations for four sources using ICA

a highly precise solution as shown at “D” in Fig. 6.
We also employ the correlation approach [7, 8] to align

permutations more precisely. We use the envelope v f
i (t) =

|Yi(f, t)| of a separated signal Yi(f, t) to measure correla-
tion. The correlation between two signals x(t) and y(t) is
defined as cor(x, y) = (µx·y − µx · µy)/(σx · σy), where
µx is the mean and σx is the standard deviation of x. En-
velopes have high correlation at neighboring frequencies if
separated signals correspond to the same signal. Let Πf be
a permutation corresponding to the inverse P−1(f) of a per-
mutation matrix P(f). A simple criterion for deciding Πf

is to maximize the sum of the correlations between neigh-
boring frequencies within distance δ:

Πf = argmaxΠ

∑
|g−f |≤δ

∑N
i=1 cor(vf

Π(i), v
g
Πg(i)), (2)

where Πg is the permutation at frequency g. This criterion
is based on local information and has a drawback in that
mistakes in a narrow range of frequencies may lead to the
complete misalignment of the frequencies beyond the range.
As shown at “C” in Fig. 6, the correlation approach alone
does not provide a robust solution.

Our method effectively integrates these two approaches
to solve the permutation problem robustly and precisely [11].
First, we decide permutations for frequency bins where the
confidence of the DOA estimation is sufficiently high. Let
F be the set of frequency bins where the permutation is al-
ready decided. Then, we apply (2) to frequency bins that
are close neighbors with f ∈ F . This procedure can avoid
a consecutive misalignment. However, the permutations at
low frequencies are not usually decided at this stage because
the DOA estimations are unreliable as shown in Fig. 2. To
decide permutations for these frequencies, we utilize the
harmonic structure of a signal. If the signals are speech,
there is a strong correlation between the envelopes of a fre-
quency f and its harmonics 2f, 3f and so forth. Thus, we
decide the permutation at frequency f with high confidence,
if the sum shown below can be clearly maximized:

Πf = argmaxΠ

∑
g=2f,3f,...

∑N
i=1 cor(vf

Π(i), v
g
Πg(i)).

Finally, we apply (2) again for frequencies where the per-
mutation is not yet decided.

III - 886

➡ ➡



1000 2000 3000 4000 5000 6000

−1

0

1

A
m

pl
itu

de

1000 2000 3000 4000 5000 6000

−1

0

1

A
m

pl
itu

de

Time (sample)

Fig. 3. Periodical time-domain filter represented by fre-
quency responses sampled at L = 2048 points (above) and
its one-period realization (below).
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Fig. 4. Impulse responses uik(l) obtained with the periodi-
cal filter (above) and with its one-period realization (below).

4. THE CIRCULARITY PROBLEM

The frequency-domain BSS described in Sec. 2 is influ-
enced by the circularity of discrete frequency representa-
tion. The circularity refers to the fact that frequency re-
sponses sampled at L points with an interval fs/L (fs: sam-
pling frequency) represent a periodical time-domain signal
whose period is L/fs. Figure 3 shows two time-domain fil-
ters. The upper one is a periodical infinite-length filter rep-
resented by frequency responses Wij(f) calculated by ICA
at L points. Since this filter is unrealistic, we usually use its
one-period realization shown in the lower part.

However, such one-period filters may cause a problem.
Figure 4 shows impulse responses from a source sk(t) to
an output yi(t): uik(l) =

∑M
j=1

∑L−1
τ=0 wij(τ)hjk(l − τ).

Those on the left u11(l) correspond to the extraction of a
target signal, and those on the right u14(l) correspond to the
suppression of an interference signal. The upper responses
are obtained with the infinite-length filters, and the lower
ones with the one-period filters. We see that the one-period
filters create spikes, which distort the target signal and de-
grade the separation performance.
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Reverberation time: 
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Fig. 5. Experimental conditions

Here, we consider two reasons for these spikes. One is
that the frequency responses are under-sampled and the cor-
responding time-domain filter has an overlap with another
period. ICA solutions separately obtained in frequency bins
generally require the time-domain filters to be longer than
L. The other reason is that adjacent periods work together
to perform some filtering even if the first problem is solved.
The effect of the second problem can be mitigated if the am-
plitude of the filter coefficients around both ends is small.
It might be thought that a sufficiently large L would solve
these problems. However, an excessively long STFT frame
results in fewer samples at each frequency and worse ICA
solutions [12].

Our approach to this problem involves controlling the
frequency responses Wij(f) so that the corresponding time-
domain filter wij(l) fits length L and has small amplitude
around the ends. This is carried out by windowing w ij(l)·
g(l) with a window g(l) that tapers smoothly to zero at each
end, such as a Hanning window. With this operation, fre-
quency responses W(f) obtained by ICA are smoothed as
W(f) ← ∑fs−∆f

φ=0 G(φ)W(f−φ), where G(f) is the fre-
quency response of g(l) and ∆f = fs/L. If a Hanning
window is used, the frequency responses are smoothed as
W(f) ← [W(f−∆f) + 2W(f) + W(f +∆f)]/4. The
windowing successfully eliminates the spikes. However, it
changes the frequency response obtained by ICA and causes
an error. Thus, we minimize the error by adjusting the scal-
ing of the ICA solution before windowing. See [13] for the
details of the error and how to minimize it.

5. EXPERIMENTAL RESULTS

We performed experiments to separate speech signals in an
environment whose conditions are summarized in Fig. 5.
We tested cases of two, three and four sources whose po-
sitions are indicated in Table 1. The sensors were arranged
linearly, and the number of sensors used was the same as the
number of sources. We used filters of length L = 2048 be-
cause this length performed the best under the conditions.
The ICA algorithm used was FastICA [3] followed by In-
foMax combined with the natural gradient [2]. The results
shown in Table 1 are the average of eight combinations of
7-second speeches. The signal-to-interference ratio (SIR) at
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Table 1. Overall results for the batch processing
#sources / position 2 / a b 3 / a b c 4 / a b c d
spectral smoothing no yes no yes no yes

SIR (dB) 18.0 18.7 13.0 14.4 9.5 12.0
execution time (s) 9.9 9.9 18.7 18.8 27.8 27.9

   D   C D+C+Ha Optimal
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Fig. 6. Separation performance for four sources with differ-
ent methods for the permutation problem

output i is calculated as the ratio of the power of a target
component

∑
l uii(l)si(t− l) and interference components∑

k �=i

∑
l uik(l)sk(t − l). We see that the spectral smooth-

ing discussed in Sec. 4 improves the average SIR in every
setup, especially with three and four sources.

Figure 6 shows separation performance for four sources
with different methods for the permutation problem discussed
in Sec. 3: “D” is the DOA approach alone, “C” is the corre-
lation approach alone, “D+C+Ha” is the proposed method,
and “Optimal” is the optimal solution obtained by utilizing
the information of sk(t) and hjk(l). We see that the perfor-
mance of “D” was stable but insufficient, the performance of
“C” was unstable, and “D+C+Ha” performed very well and
close to “Optimal”.

Fast processing and convergence is one of the advan-
tages of frequency-domain BSS. By using shorter filters L =
1024 and decreasing the number of iterations in the natu-
ral gradient, the BSS system performs in real-time for three
sources. We used the same system structure as the one for
two sources described previously [14]. Figure 7 shows the
SIR for each source, where the source at position “d” started
to move to position “c” at a time of 15 seconds. Since the
filter coefficients were updated every 3 seconds, the system
tracked the moving and recovered the SIRs.

6. CONCLUSIONS

This paper presented effective methods for overcoming the
two major problems of frequency domain BSS. We suc-
ceeded in separating many sources mixed in a real environ-
ment with a practical execution time. The results shown
here were for up to four sources with linearly arranged sen-
sors. We have also separated six sources with a planar array
of eight sensors based on similar techniques [15].
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Fig. 7. Real-time processing for moving sources
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