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ABSTRACT

Sparse constraints on signal decompositions are justified by
typical sensor data used in a variety of signal processing fields such
as acoustics, medical imaging, or wireless, but moreover can lead
to more effective algorithms. The specific sparseness assumption
used in this work is that the maximum number of statistically inde-
pendent sources active at any time and frequency point in a mixture
of signals is small. This is shown to result from an assumption of
sparseness of the sources themselves, and allows us to solve the
maximum likelihood formulation of the non-instantaneous acous-
tic mixing source estimation problem. We consider an additive
noise mixing model with an arbitrary number of sensors and pos-
sibly more sources than sensors, when sources satisfy the sparse-
ness assumption above. The solution obtained is applicable to an
arbitrary number of microphones and sources, but works best when
the number of sources simultaneously active at any time frequency
point is a small fraction of the total number of sources.

1. INTRODUCTION

The idea of a sparse signal representation is to transform signal
data into a domain where data can be parsimoniously described
(for instance by a superposition of a small number of basis) or,
more generally, has a small �p-norm (0 ≤ p ≤ 1) [1, 2, 3]. Typ-
ical signal transformations are the Fourier, the wavelet transform,
or independent component analysis (ICA) transformations adapted
to the data [4]. Taking sparseness as a prior assumption about sig-
nal models is often justified by the nature of signals (e.g. natural
images [5], sounds [6]). More importantly, the assumption can
lead to effective algorithms for signal separation. This has been
the case in applications ranging from audio source separation to
medical and image signal processing [7]. The subject of this paper
is twofold. First we discuss the form of our sparsity assumption,
then we present its application to blind source separation of noisy
real-world audio signals.

Our sparsity assumption is given by a constraint on the maxi-
mum number of statistically independent sources present in a mix-
ture of signals at any time and frequency point. This is a general-
ization of the assumption – that time-frequency representations of
any two sources do not overlap – used in [8], which introduced a
BSS technique for the separation of an arbitrary number of sources
from just two mixtures. The key observation in the technique
was that each time-frequency (TF) point depended on at most one
source and its associated mixing parameters. This deterministic
hypothesis was called W-disjoint orthogonality. In anechoic non-
noisy environments, it is possible to extract the mixing parameters

from the ratio of the TF representations of the mixtures. Using the
mixing parameters, one can partition the TF representation of the
mixtures to produce the original sources.

The deterministic signal model was extended to a stochastic
signal model in [9], where each time-frequency coefficient was
modeled as a product between a continuous random variable and a
0/1 discrete Bernoulli random variable (indicating the “presence”
of the source). This way signals can be modeled as independent
random variables, and one can derive the maximum likelihood
(ML) estimator of the mixing parameters. The approach has good
results on real data even for more sources than sensors and has
been further analyzed in the literature. However, the sparse na-
ture of the signal estimates implies that their time-domain recon-
struction by time-frequency masking will contain artefacts. The
problem is alleviated in [10] by combination of masking and ICA.

In this paper we deal with a multi-channel (D > 2) exten-
sion in the presence of noise by exploring a generalization of the
sparsity assumptions from [8, 9, 11]. We further extend the ML
estimators derived before. The ML approach considers both mix-
ing parameters and sources, unlike in [12] where the optimization
was over mixing parameters only.

The rest of the paper is organized as follows. Section 2 presents
a statistical motivation of the sparseness assumption, its general-
ization, and the mixing model. Section 3 shows the derivation of
the ML estimator of the mixing parameters and the source signals.
Section 4 focuses on the capability of the algorithm under the as-
sumption that either one or only two sources are active at any time
frequency point. Experiments use eight sensors and four voice
mixtures in the presence of noise and show enhanced intelligibil-
ity of speech under the more general sparsity assumption.

2. MIXING MODEL ASSUMPTIONS

2.1. Sparseness and the Generalized W-Disjoint Orthogonal-
ity Hypothesis

In [12] we called two signals s1 and s2 W-disjoint orthogonal, for
a given windowing function W (t), if the supports of the windowed
Fourier transforms of s1 and s2 are disjoint, that is:

S1(k, ω)S2(k, ω) = 0 , ∀k, ω (1)

This deterministic assumption implies that the signals are in
general statistically dependent, which is not the case. Yet, relation
(1) is satisfied in an approximate sense (e.g. in particular by real
speech signals [13]). Furthermore, [11] shows that relation (1) can
be seen as the limit of a stochastic model introduced in [9].
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Here we generalize this model and show that it follows from
a sparsness prior. We call L signals s1, s2, . . . , sL generalized W-
disjoint orthogonal (or N -term W-disjoint orthogonal) if for every
time-frequency point (t, ω), there are L−N indices {jN+1, . . . , jN}
in {1, 2, . . . , L} so that

Sjk (t, ω) = 0 , ∀N + 1 ≤ k ≤ L. (2)

We briefly review the model and signal class from [9]. It states
that the time-frequency coefficient S(k, ω) of a (speech) signal
s(t) factors as a product of a continuous random variable, say
G(k, ω), and a 0/1 Bernoulli V (k, ω):

S(k, ω) = V (k, ω)G(k,ω) (3)

This formula models sparse signals. Denoting by q the probability
of V to be 1, and by p(·) the p.d.f. of G, the p.d.f. of S turns into

pS(S) = qp(S) + (1 − q)δ(S) (4)

with δ, the Dirac distribution. For L independent signals S1, . . . , SL,
the joint p.d.f. is obtained by conditioning with respect to the
Bernoulli random variables. To simplify the notation, we assume
all G(k, ω) have the same distribution p(·), and all V (k, ω) have
the same q. We obtain:

p(S1, . . . , SL) = (qp(S) + (1 − q)δ(S))L (5)

=
L∑

k=0

qk(1 − q)L−k
∑

1≤a1≤a2≤···≤ak≤L

k∏
j=1

p(Saj )
L∏

j=k+1

δ(Saj )

where {a1, a2, . . . , aL} = {1, 2, . . . , L}.
Next assume q � 1 and approximate the expansion by only

the first N terms. Renormalizing the remaining terms, we obtain

pGWDO =
(1 − q)L

Z

L∏
l=1

δ(Sl) + q
(1 − q)L−1

Z

L∑
l=1

p(Sl)
∏
j �=l

δ(Sj) (6)

+ · · · qN (1 − q)L−N

Z

∑
1≤a1≤a2≤···≤aN≤L

N∏
j=1

p(Saj )
L∏

j=N+1

δ(Saj )

with {a1, a2, . . . , aN , aN+1, . . . , aL} = {1, 2, . . . , N}, and Z =

(1 − q)L−N (1−q)N+1−qN+1

1−2q
. Each term of this expression has

an interesting interpretation. More specifically, the rank k term,
0 ≤ k ≤ N , is associated to a case when exactly k sources are ac-
tive, and the rest are zero. The the joint p.d.f. in (6) corresponds to
the case when at most N sources are active simultaneously, which
constitutes the generalized W-disjoint hypothesis.

This is the stochastic counterpart of the deterministic con-
straint implied by (2). Equation (6) shows that the constraint on
the signals is a reasonable assumption in the stochastic limit, hence
the name pGWDO. In this paper we do assume the joint p.d.f. of the
source signals in the short-time Fourier domain is given by (6),
with the interpretation that this is not an inconsistent assumption
but rather the limit of a stochastic model derived from assumptions
of sparsity of the sources.

2.2. Mixing Model

Next we introduce a specific additive noise mixing model for non-
instantaneous audio signals, where sensor noises are assumed in-
dependently distributed and have Gaussian distributions with zero
mean and σ2 variance.

Consider the measurements of L source signals by a equis-
paced linear array of D sensors under a far-field assumption where
only the direct path is present. In this case, without loss of gen-
erality, we can absorb the attenuation and delay parameters of the
first mixture x1(t), into the definition of the sources. Furthermore,
for the purposes of this paper we neglect the relative attenuation
between sensors.

x1(t) =
L∑

l=1

sl(t) + n1(t)

xk(t) =
L∑

l=1

sl(t − τk,l) + nk(t), 2 ≤ k ≤ D (7)

where n1, . . . , nD are the sensor noises, and τd,l is the delay of
source l to sensor d. For a far-field equispaced sensor array, the
delays τd,l are linearly distributed across the sensors (i.e. with
respect to index d). We can define the average delay τl, so that

τd,l = (d − 1)τl, 1 ≤ d ≤ D, 1 ≤ l ≤ L (8)

Clearly other mixing models can be considered at the expense of
increasing the model complexity. We use ∆ to denote the maximal
possible delay between adjacent sensors, and thus |τl| ≤ ∆, ∀l.

We denote by Xd(k, ω), Sl(k, ω), Nd(k, ω) the short-time
Fourier transform of signals xd(t), sl(t), and nd(t), respectively,
with respect to a window W (t), where k is the frame index, and ω
the frequency index. Then the mixing model (7) turns into

Xd(k, ω) =
L∑

l=1

e−iω(d−1)τlSl(k, ω) + Nd(k, ω) (9)

When no danger of confusion arises, we drop the arguments k, ω
in Xd, Sl and Nd.

Our problem is: given measurements (x1(t), . . ., xD(t))1≤t≤T

of the system (7), estimate the mixing parameters (τl)1≤l≤L and
the source signals (s1(t), . . ., sL(t))1≤t≤T .

The approach to this problem is the following: (1) estimate
the mixing parameters using the stronger W-disjoint orthogonality
assumption and the ML estimator as in e.g. [11], and (2) estimate
the source signals under the generalized W-disjoint orthogonality
assumption. The latter is presented next.

3. TWO ESTIMATORS OF SIGNALS

In this section we derive the maximum likelihood estimator of
source signals, as well as an “ad-hoc” estimator of signals, both
under the assumption (2). At every TF point (k, ω) there is a sub-
set of N indices, Π = {j1, . . . , jN} ⊂ {1, 2, . . . , L}, that speci-
fies which signals are allowed to be nonzero. Beside this, there are
exactly N complex unknown variables, R = (R1, . . . , RN ) that
define the values of the active signals:

Sjm (k, ω) = Rm(k, ω) , 1 ≤ m ≤ N (10)

Sj(k, ω) = 0 , j �∈ Π (11)

Hence the unknown source signals are uniquely defined by (Π,R).
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3.1. The ML Estimator of (Π, R)

Given the mixing parameters (τl)1≤l≤L, the likelihood of the source
signal (Π, R) is then

L(Π, R) =
∏

(k,ω)

D−1∏
d=0

1

πσ2
exp{− 1

σ2
|Xd+1(k, ω) − Yd(k, ω)|2}

(12)
where

Yd(k, ω) =
N∑

l=1

e−idτjl(k,ω)ωRl(k, ω)

Taking the logarithm and rearranging the expression, we get that
(Π, R) is the minimizer of:

minΠ,R I(Π,R) =
∑
(k,ω)

D−1∑
d=0

|Xd+1(k, ω) − Yd(k, ω)|2 (13)

Then R is easily obtained at every TF point (k, ω) as a least square
solution, namely

R̂ = (M∗M)−1M∗X (14)

where M is the D × N matrix Md,l = e−idτjl
ω , 0 ≤ d ≤ D −

1, 1 ≤ l ≤ N . Using Vandermonde determinats, one can show
the matrix M∗M is invertible if and only if N ≤ D and ωτl �=
ωτf (mod 2π), for all l �= f . Assume from now on we are in such
a case (for instance by choosing N < D and (τl)l to be distinct
from one another and smaller than 1). Note the optimal solution
depends on Π through the choice of indices (jl)l. Next we replace
R̂ into (13) and the minimization of I turns into the maximization
of:

maxΠ J(Π) = X∗M(M∗M)−1M∗X (15)

over all L-choose-N objects. The geometric interpretation of J(Π)
is the following: it represents the size of the projection of X onto
the span of columns of M, J(Π) = ‖PMX‖2. Hence the optimal
choice Π̂ represents the closest N -dimensional subspace of CD to

X among all

(
L
N

)
subspaces spanned by different combina-

tions of N columns of the matrix M.
Solving max J(Π) is in general a computationally expensive

problem, since it requires generating all

(
L
N

)
combinations of

columns of M and computing J(Π) for each of them. In [11] we
presented a solution for the case N = 1. Similarly, for N = D−1
and L = D we obtain also a simple solution using the following
observation. If j ∈ {1, . . . , L} denotes the missing index in Π,
then J(Π) = ‖X‖2 − |ajX|2/‖aj‖2 where aj is the jth row of
the D × D matrix Q, Qd,j = e−idτjω , 1 ≤ d, j ≤ D.

The algorithm can be modified to deal with an echoic mixing
model, or different array configurations at the expense of increased
computational complexity. It requires knowledge of the number of
sources, however this number is not limited to the number of sen-
sors. It works also in non-square case. The algorithm is guaranteed
to converge to a local minimum only.

Since we used (6) as the stochastic limit of (5), the signal es-
timator we derive is the maximum á posteriori with respect to the
prior joint p.d.f. (6). However, if one adopts the deterministic
point of view regarding (2), our estimator is truly the maximum
likelihood estimator.

3.2. An ad-hod estimator of (Π, R)

We have also derived and used for comparison another estimator of
source signals. This estimator is obtained by noticing that the esti-
mates of the source signals have to satisfy the N -term W-disjoint
orthogonality hypothesis and they have to fit as well as possible
in (7). With these constraints in mind, we implemented a sec-
ond estimator as follows. For each subset Π = {j1, . . . , jN} of
{1, 2, . . . , L} and every subset Γ = {g1, . . . , gN} ⊂ {1, 2, . . . , D}
both of N elements, we solve the linear system

Xgl (k, ω) =

N∑
f=1

e
−i(gl−1)τjf

ω
RΓ,Π

jf
(k, ω) , 1 ≤ l ≤ N (16)

Then average the estimates for some source index j over all subsets
Γ,

R̃Π
j =

1∑
Γ w(Γ)

∑
Γ

w(Γ)RΓ,Π
j (k, ω) (17)

where the weight w is chosen as w(Γ) = 1/
√∑

g∈Γ g2 because

we assume the errors are larger for microphones further away from
microphone 1. Next we compute the mean square error

K(Π) =
1∑

Γ w2(Γ)
∑

j∈Γ |R̃Π
j |2

∑
Γ

w2(Γ)
∑
j∈Γ

|R̃Π
j − RΓ,Π

j |2

and the optimal subset Π of N active sources is estimated by min-
imizing

Π̃ = argminΠK(Π) (18)

The signal estimator is then defined by

S̃j = R̃Π̃
j (19)

4. EXPERIMENTAL RESULTS

We have implemented the two estimators described and applied
them on realistic voice mixtures generated with a ray tracing model.
Our main goal is to compare the performance of the approach
when N (number of sources active simultaneously) increases. Will
this degrade performance, or on the contrary, enhance separation
at the cost of increased computational complexity?

Mixtures consisted of four source signals in different room en-
vironments and Gaussian noise. The room size was 4 × 5 × 3.2
m. We used setups corresponding to anechoic and echoic mixing
with reverberation time 130 ms. The microphones formed a linear
array with 2 cm spacing. Source signals were distributed in the
room. Input signals were sampled at 16KHz. For time-frequency
representation we used a Hamming window of 256 samples and
50% overlap. Noise was added on each channel. The average
(individual) signal-to-noise-ratio (SNR) was 10 dB, while the av-
erage input signal-to-interference-ratio (SIR) was about −4.7 dB.

To compare results, we used three criteria: output average sig-
nal to interference ratio gain (includes other voices and noise), sig-
nal distortion, and mean opinion intelligibility score. The first two
are defined as follows:

SIRgain =
1

Nf

Nf∑
k=1

10log10(
‖ So ‖2

‖ Ŝ − So ‖2

‖ X − Si ‖2

‖ Si ‖2
) (20)
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distortion =
1

Nf

Nf∑
k=1

10log10

‖ So − Si ‖2

‖ Si ‖2
(21)

where: Nf is the number of frames where the summand is above
−10 dB for SIR gain, and −30 dB for distortion; Ŝ is the esti-
mated signal that contains So contribution of the original signal;
X is the mixing at sensor 1, and Si is the input signal of interest at
sensor 1. The summands were saturated at +30 dB for SIR gain
and +10 dB for distortion. Ideally, SIRgain should be a large
positives, whereas distortion should be a large negative.

We performed tests on noisy data for which SIR level for each
source is approximately -4.7 dB, while noise determines an SNR
level for the average voice on a channel of 10 dB. Figure 1 shows
plots of the wav files of interest for a run of the algorithm where the
mixing parameters were obtained using the algorithm described in
[11] (Step 1 of the present approach, assuming at most one source
active at any time frequency point), while Π and source estima-
tion parameters were determined using the implementation of the
present estimators. Average SIR gains shows a degradation in per-
formance from N = 1 to N = 2, and from anechoic to echoic data
(See Fig. 2). However, mean intelligibility scores are best when
the number of sources simultaneously active at any time frequency
point is N = 2. We conjecture that the sweet spot in separation is
when N is a small fraction of the total number of sources.
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Fig. 1. Example of 8-channel ML algorithm behavior on mixture of noise
and four voices each at approximately −4.7 dB input SIR. The first four
plots represent the original inputs. The fifth row gives the mixture on chan-
nel 2. The separated outputs are presented in the last four rows.

5. CONCLUSIONS

We show that a small number of simultaneously active sources in
time-frequency domain is justifiable from a stochastic perspective.
This hypothesis, called generalized W-disjoint orthogonality, ex-
tends the model studied in [11], and is obtained as an asymptotic
approximation in the expansion of the joint pdf of sparse sources.
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Fig. 2. Average SIR gains and one standard deviation bars for anechoic
and echoic experiments with implementations of the ML and Ad-Hoc esti-
mators.

Our source separation algorithm implements both the ML and
a heuristic estimator for source signals under a direct-path mix-
ing model and for a linear array of sensors in the presence of
noise. Tests with the algorithm on noisy mixtures show that the
perceptual quality of separated signals improves at the expense of a
smaller reduction in the noise by assuming that two signals are ac-
tive simultaneously at every time-frequency point rather than one.
Future work will integrate these signal estimators with a mixing
parameter estimator.
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