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Abstract— We propose a novel decentralized detection scheme
based on the method of types and type detectors. Contrary to
conventional methods, the proposed decentralized type detection
(DTD) scheme asymptotically achieves the performance of cen-
tralized detection, provided there exists an arbitrarily small (but
non-zero) communication capacity between the sensing nodes and
the decision center. The sensing nodes extract and transmit the
type information of the observed data sequence, which is then
recovered and used by a type detector at the decision center.
The key to DTD is that the required network information flow
(type information) is of asymptotically vanishing entropy rate
but still sufficient for the hypothesis testing problem. The simple
structure of type sensors greatly reduces system cost in terms
of computational and communication capabilities for sensor
nodes. In particular, the sensor nodes need not know the signal
statistics under different hypothesis. Theoretical analysis and
numerical simulations demonstrate the excellent performance of
the proposed DTD scheme.

I. INTRODUCTION

The decentralized detection or hypothesis testing problem
represents a large number of applications in sensor networks,
where a decision center chooses a hypothesis based on
measurements at multiple (remote) sensing nodes. Typically,
sensor nodes have limited computational and communication
capabilities. In view of channel noise and uncertainty which
corrupts transmission from sensing nodes to decision center,
the conventional wisdom is that decentralized detection incurs
a performance loss compared to its centralized counterpart,
centralized detection [1], [2], which assumes perfect availabil-
ity of all sensor data at the decision center.

However, this traditional view is challenged in this paper.
We propose a novel, asymptotically optimal, decentralized
detection scheme that achieves the performance of centralized
detection as the length of observed data sequence increases.
The key idea behind our approach is that it is the empirical
distributions rather than the actual values of observed data
sequence that govern optimal hypothesis testing [2]. For
discrete random variables, the type of a sequence measures
the its empirical distribution. It is crucial that the type in-
formation grows only polynomially with the sequence length,
and thus has a vanishing entropy rate. Therefore, it can be
reliably transmitted to the remote decision center provided that
capacity of the channel from sensing nodes to the decision
center is non-zero, no matter how small it is. The extension to

continuous alphabet can be achieved by various conventional
quantization methods. In other words, we can interpret the
proposed decentralized type detection scheme as a minimal
compression of source data information that puts asymptoti-
cally vanishing communication burden on the network without
sacrificing detection performance. Another attractive feature
of the type-based detection is that the sensing node does not
need the statistics information about different hypothesis— it
simply acts as a dumb counter.

In fact, the use of type in statistical inference context has
been investigated in the literature (see, e.g., [3] for a review)
where the asymptotic optimality of type-based methods has
been observed for many cases. But in this paper, we focus
primarily on the effect of noisy communication channel upon
the distributed detection problem. We emphasize the appli-
cation of the method of types to sensor networks and its
associated engineering insights for efficient information and
signal processing in sensor networks.

The rest of this paper is organized as follows. The method of
types and type detection are reviewed in Section II. Section III
presents the proposed decentralized type detection (DTD)
framework. Due to space limitation, the proof of asymptotic
optimality is not included, but can be found in [4]. Section IV
contains preliminary numerical results, which demonstrate the
superior performance of the proposed DTD scheme compared
to conventional methods.

II. THE METHOD OF TYPES AND TYPE DETECTORS

A. The Method of Types

The method of types was fully developed by Csiszár and
Körner [5]. It is a powerful technique based on the large
deviation theory and deals with sequences with the same
empirical distribution or “type”.

The following notations will be used throughout. Let A be
the discrete alphabet with size |A| = A. Sequence x1, . . . , xn

may be denoted by x, or xn
1 when dimension is empha-

sized. The set of all probability distributions (PD’s) on A
is denoted by P(A) or simply P if the alphabet A is clear
from the context. For PD’s P and Q, H(P ) denotes entropy
and D(P‖Q) denotes information divergence or the Kullback
Leibler (KL) distance [2]: H(P ) = −∑

a∈A P (a) log P (a)
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and D(P‖Q) =
∑

a∈A P (a) log P (a)
Q(a) . The base of log and

exp is implicitly assumed to be e.
Definition 1: The type Px (or empirical probability distri-

bution) of a sequence x1, . . . , xn is the relative frequency of
each symbol of A, i.e.,

Px(a) = N(a|x)/n, ∀a ∈ A, (1)

where N(a|x) is the number of occurrences of the symbol a
in the sequence x ∈ An. Let Pn(A) ⊂ P(A) be the set of
types on An. For P ∈ Pn(A), the type class T (P ) denotes
the set of all sequences with the same type P .

The following simple upper bound on |Pn(A)| is sufficient
for most applications.

Proposition 1 (see Theorem 12.1.1 in [2]):

|Pn(A)| ≤ (n + 1)A. (2)
If X1, . . . , Xn are drawn i.i.d. according to a PD Q ∈ P(A),

then the probability of x depends only on its type Px

Qn(x) =
∏

a∈A
Q(a)nPx(a)

= exp{−n[H(Px) + D(Px‖Q)]}.
(3)

B. Type Detectors

The task of detection can be generally characterized as de-
ciding the best explanation among a set of different hypotheses
for the observed data. Let Hm (1 ≤ m ≤ M ) denote the mth
hypothesis under which the data distribution is Qm. There are
two (almost equivalent) formulations concerning the detection
performance. One is the Neyman-Pearson formulation which
considers the detection error for each hypothesis. The other is
the Bayes formulation which weighs all the detection errors
together. Given the observed data xn

1 , the best Neyman-
Pearson detector is the likelihood ratio test, where the detector
will choose a hypothesis according to the ratio of various
pairs of Qn

m(x) and Qn
l (x) [1]. On the other hand, the

optimal Bayes detector is a MAP (the maximum a posterior
probability) detector, which chooses the hypothesis with the
maximum value of π(m)Qn

m(x) where π(m) for 1 ≤ m ≤ M
is the prior probability of the mth hypothesis [1]. When the
prior probability for all hypotheses are equal, one has the
standard maximum likelihood (ML) detector, which chooses
the hypothesis with the largest likelihood

d(x) = arg max
1≤m≤M

Qn
m(x). (4)

Therefore, given the observed sequence X1, . . . , Xn, the suf-
ficient statistics for the detection problem are all the Qm-
probabilities of the given sequence x, that is, Qn

m(x) for
1 ≤ m ≤ M .

Assuming Xi’s to be i.i.d., the Qm-probability of x depends
only on the type Px by (3). It follows that two observed
sequences with the same type will yield identical decision
statistics, thus indistinguishable from the viewpoint of optimal
detection. In other words, it is the type of the observed
sequence, not its particular value, that determines the operation
of the optimal detector. Thus, we introduce the concept of a
type detector.

Definition 2: A type detector is one that operates on the
type of the observed data.

Optimal detectors such as likelihood ratio test, MAP (or
ML) detector are particular examples of type detectors, which
implies the optimality of type detector. Classical optimal
detection can be alternatively interpreted in the framework of
type detection as first extracting the type information from the
observed sequence and then making a decision accordingly.
Mathematically, let Sn

1 , . . . , Sn
M be a partition of the type

space Pn with Sm associated with hypothesis m, that is,

Sn
i ∩ Sn

j = φ, ∀i �= j, and
⋃

i

Sn
i = Pn. (5)

The detection is given by

d(x) = arg1≤m≤M{Px ∈ Sn
mis true}. (6)

H1

HM

...

Type Space

Fig. 1. A schematic illustrating the partition of the type space into disjoint
subsets corresponding to different hypothesis.

Fig. 1 illustrates the interpretation of detection via types.
The type space Pn, dense in the simplex P , is partitioned
into M decision regions, each assigned to a hypothesis. A
particular hypothesis is chosen by the detector if the observed
type belongs to the corresponding decision region. In the
framework of types, it is readily verified that ML detection
amounts to

d(x) = arg min
1≤m≤M

D(Px‖Qm), (7)

that is, the detector chooses the mth hypothesis if the type
(or empirical distribution) of the data is closest to Qm in KL-
distance. The type decision region in this case is given by

SML,n
m = {P : D(P‖Qm) < D(P‖Ql),∀l �= m}. (8)

III. DECENTRALIZED TYPE DETECTION IN SENSOR

NETWORKS

A. Asymptotic Optimality of Decentralized Detection

Consider K independent sensors. Let X
(k)
1 , . . . , X

(k)
n be the

observed i.i.d. sequence (of length n) at the kth sensor. Denote
by C the minimum communication capacity of each sensor to
the decision center. The total channel use, t, by remote sensor
nodes is required to be on the order of the sequence length n,
that is,

t

n
∼ O(1), as n → 0. (9)
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Given a detection problem involving M different hypotheses
with PD’s Q1, . . . , QM , the ideal centralized detection has all
sensor data available at the decision center. Let Ec be the
optimal exponent of centralized detection on K sensors for
hypothesis m, that is,

lim
n→∞− 1

nK
log αnK

m = Ec (10)

where α is the associated detection error probability. Let Ed

denote the error exponent for decentralized type detection
scheme.

Theorem 1 (Asymptotic Optimality): Assume D =
minl �=m D(Ql‖Qm) < ∞. If C > 0, then

(Ed)opt = Ec, (11)

that is, the decentralized type detection achieves the same
optimal performance as its centralized counterpart, provided
the communication capacity between sensor nodes and de-
cision center is strictly positive (but maybe arbitrary small).
Moreover, the optimal decentralized detection is achieved by
transporting type information from the sensing nodes and
using type detection at the decision center.

B. Decentralized Type Detection

Information
Type

Type Transportation

Network Nodes

Sensing Node

Type Detection

Decison
Center

TS

Type Sensor

(TD)(TT)

Fig. 2. A schematic illustrating the DTD framework. The remote sensing
nodes are type sensors (TS) that collect the type information of observed data
sequence. Type information from various sensing nodes is transported to the
decision center, where type detection (TD) is used to make final detection.

The proposed framework of decentralized type detection
in sensor networks is illustrated in Fig. 2. For brevity, we
assume discrete random variables (or fixed quantization level
for continuous alphabets). The sensor nodes are configured as
type sensors which simply record the type of the observed
sequence. Such an operation involves nothing more than
counting of the relative frequency for each symbol in the
alphabet. Upon observing a sequence of data, each type sensor
codes its message according to the type it has observed and
transmits the type information to the remote decision center,
which we call the type transportation. The type transportation
from sensor nodes to decision center may involve the col-
laboration of other intermediate nodes depending on network
communication protocols. The decision center receives the
type information from all remote sensors. It then combines
received type information to compute the joint type on all

sensor data, based on which the type detector makes the final
decision.

There are several major advantages of the DTD framework.
First, the sensor nodes can be both “cheap” in the sense that
only counting is sufficient, and “dumb” in the sense that the
sensor nodes need no knowledge of the detection task intended
in the decision center. The decision center can exert a great
level of flexibility in its detection tasks without updating the
remote sensor. This feature is particularly helpful to reducing
the system cost. In contrast, existing methods either demand
sophisticated decision making at sensor nodes or require
knowledge of signal statistics for off-line configuration of
data processing at the sensor nodes [6], [7]. Second, the
type information is of asymptotically vanishing (entropy) rate,
compared with existing methods that have a non-trivial data
flow. Thus, the proposed framework puts an asymptotically
vanishing communication burden on the network, which, in
turn, affords great flexibility in designing communication
protocols.

SGLTS

...

Sensor Group

SGLTS

Local Type
Information

Network Nodes

Type Transportation

Decision
Center

TD

Fig. 3. Remote sensing nodes are arranged into small local groups among
which exchange of data at relatively high speed is feasible. Each group selects
a group leader (SGL), which computes the joint type of all the sensor in its
group and then transmits its type information to the remote decision center.

However, the efficiency of the DTD framework is critically
controlled by the length of observed sequence at sensor
nodes. The longer the sequence, the smaller the relative sensor
information flow. If sensor nodes can only observe a very short
sequence (one data record, for instance), one can divide sensor
nodes in local groups. Relatively higher communication can
be attained within a group; close sensor nodes enjoy larger
link capacity than distant nodes. The collaboration is carried
out in a group such that the group leader in a group can
obtain the joint type of all observed data in the group. From
this point on, individual group leaders relay type information
to the remote decision center. Such a modified scheme is
illustrated in Fig. 3. Since the information flow from sensor
group leaders to decision center can be made small, the link
capacity requirement on decision center is thus significantly
reduced. For example, the decision center can now be far
from the sensor deployment without severely handicapping its
detection performance.
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IV. NUMERICAL RESULTS

In this section, we present numerical results to illustrate the
performance of decentralized type detection. Source data are
i.i.d. Bernoulli random variables (with symbol “1“ and “0”)
with parameters corresponding to two different hypotheses. To
simplify the simulation, a dedicated additive white Gaussian
noise (AWGN) channel is assumed between each sensing
node and decision center. The following detection schemes
are considered:

1) Centralized Detection: Data sequence observed by all
sensing nodes are perfectly available at the decision
center. The performance of centralized detection upper-
bounds that of any decentralized detection scheme.

2) Decentralized Type Detection: Sensing node prepares
the type information according its observation data.
A simple repetition code is used for channel coding
and channel modulation is chosen to be Binary Phase
Shift Keying (BPSK). To illustrate the operation at the
sensing nodes, we consider, for example, that a sequence
1100, 0010, 0000, 110 of length 15 is observed by a
sensing node. It counts the number of occurrence of
“1” and “0” to get the type information N(1) = 5 and
N(0) = 10 in this case, whose binary representation is
0101, 1010, a total of 8 bits. Since we allow transmission
duration to be about the same length as sequence length,
the type information is repeated until it fills all the
transmission time. In this case, the information packet
sent through the channel is, 00, 11, 00, 11, 11, 00, 11, 00,
noting that each bit is repeated twice, that is, a repetition
code of rate 1/2 is used to encode the type information.
At the decision center, received signals from sensing
nodes are demodulated and decoded to reconstruct the
type information packet of each sensing node. For a
successful transmission, type information N ′(1) = 5
and N ′(0) = 10 is recovered at the decision center. Oth-
erwise, a detection error may happen due to erroneous
type information. However, the probability of such an
error event decays exponentially as the length of data
sequence increases.

3) Soft Data Fusion: The BPSK modulation is directly
used to send sensor data to the decision center, which
induces an overall distribution on the received signal
at the decision center. Such a composite distribution is
due to both source distribution and channel noise. For
Bernoulli parameter p, the composite probability density
function is given by

f(x) = pG(x − 1) + (1 − p)G(x + 1) (12)

where G(x) = 1√
2πσ

e−x2/2σ2
with σ specified by

channel SNR. The ML detection on the composite
distribution is carried out at the decision center.

4) Hard Data Fusion: Similar to the soft data fusion
method, sensor data are sent to decision center by
BPSK. But, instead of detection based on composite
distribution, the decision center first decodes sensor data,

which is a sequence of “1” and “0”. Then, ML detection
is performed as if the reconstructed data sequences are
perfect without transmission error.

We emphasize that the channel SNR is kept the same for all
decentralized detection schemes to keep the comparison fair.
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Fig. 4. Detection error probability as a function of data sequence length. The
channel SNR is 0dB. Two hypotheses on source are p0 = 0.6 or p1 = 0.4.
The number of sensors is K = 2.

Fig. 4 plots a performance comparison between aforemen-
tioned detection schemes. The channel is very noisy (0dB),
which suggests a small transmission capacity. It is clear that
detection error probability is in exponential decay with the
sequence length. However, the decentralized type detection
exhibits almost identical performance as that of centralized
detection, while performance loss associated with data fusion
schemes is also evident.

V. CONCLUSIONS

We have presented a novel decentralized detection based on
the method of types that is asymptotically optimal. Our results
demonstrate great potential of the proposed DTD scheme to
reduce the communication burden on the network. In particu-
lar, the DTD framework can be applied to the MAC channel
situation where all sensor nodes share the same channel.

REFERENCES

[1] H. V. Poor, An Introduction to Signal Detection and Estimation.
Springer-Verlag, 1988.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[3] T. S. Han and S. Amari, “Statistical inference under multiterminal data
compression,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2300–2324,
Oct. 1998.

[4] K. Liu and A. M. Sayeed, “On asymptotic optimality of decen-
tralized detection in wireless sensor networks,” Preprint available at
http://dune.ece.wisc.edu, Oct. 2003.

[5] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

[6] J. N. Tsitsiklis, “Decentralized detection,” Advances in Statistical Signal
Processing, vol. 2, pp. 297–344, 1993.

[7] M. Longo, T. D. Lookabaugh, and R. M. Gray, “Quantization for
decentralized hypothesis testing under communication constraints,” IEEE
Trans. Inform. Theory, vol. 36, no. 2, pp. 241–255, Mar. 1990.

III - 876

➡ ➠


