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ABSTRACT

If a dense network of static wireless sensors is deployed to mea-
sure an time-varying isotropic random field, then sensor data it-
self, rather than range measurements using specialized hardware,
can be used to estimate a map of sensor locations. Furthermore,
distributed and scalable sensor localization algorithms can be de-
rived. We apply the manifold learning algorithms Isomap, Locally
Linear Embedding (LLE), and Hessian LLE (HLLE). The HLLE-
based estimator demonstrates the best bias and variance perfor-
mance, but may not be robust for all random sensor deployments.

1. INTRODUCTION

Emerging applications of wireless sensor networks will depend on
automatic and accurate location of thousands of sensors. However,
device cost will also be a key factor. By eliminating the need for
additional hardware for sensor localization, such as for GPS, ultra-
sound, or high accuracy RF time-of-arrival (TOA), we can widen
the wireless sensor network application space. In this paper, we
explore the possibility of using the same sensor to measure the
physical environment and provide sensor location information.

Sensor localization using data correlation (DC) is possible be-
cause the high density of sensors implies correlation in data recorded
at neighboring sensors. Due to the randomness of deployment -
sensors may be dropped from a helicopter or spread onto a field
from a tractor - high average density helps ensure complete cov-
erage. Also, for the manufacture of inexpensive (sometimes un-
reliable) devices, redundancy increases reliability and robustness
to sensor failures. Finally, correlation is useful to reduce data rate
(and lengthen battery lifetime) via distributed compression [1].

A startup period is required in which sensor data is measured
to establish correlations between sensors. For long-term monitor-
ing applications using static sensors, a one-time setup delay can
be readily justified. Furthermore, inexpensive devices are likely
to additionally use RF proximity or RSS information to estimate
sensor locations [2][3]. Due to space constraints, we consider lo-
calization only using correlation of sensor data in this paper, and
will discuss the combination of the two methods in future work.

1.1. Application Examples

Consider the precision agriculture application. Sensors in the soil
measuring soil pH level, salinity, nitrogen level, and moisture level,
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will allow farmers to customize the planting, watering, herbicide
application, and fertilizing of their field so to maximize their crop
and minimize their costs and negative environmental impacts [4].
Soil chemistry at various areas of the field changes over time due
to weather, biological effects, watering or fertilization. Over days
or months, the soil conditions may be viewed as a random field,
correlated in time and space. Similarly, consider acoustic sen-
sor networks deployed over wide outdoor areas for the purpose
of source localization. The ambient noise in the environment,
caused by birds, wind, lightning, vehicles, and pedestrian traf-
fic, will show significant spatial correlation, since sound attenu-
ates with distance. Sensor self-location was presented for acoustic
sensor networks when sound sources are deterministically inserted
into the environment [5] or dynamically tracked through the envi-
ronment [6]. In this paper, such purposeful sources may be a part
of the deployment, but we consider more generally the effect of
the existing environmental sources. We assume that the acoustic
field is a stationary and isotropic spatially correlated random field.

1.2. Non-linear Dimensionality Reduction

By sampling over time t = 1 . . . τ , n sensors generate a data point
in a high dimensional space, generally, �nτ . Two-dimensional
sensor location estimation can be seen as the reduction of the di-
mensionality of the data from �

nτ to �2n. In this paper, we con-
sider only 2D location, although the analysis can readily be ex-
tended to 3D. Many dimension reduction techniques have been
developed in the statistical learning community, such as principal
components analysis (PCA) and multi-dimensional scaling (MDS).

Sensor location estimation using MDS was introduced in [7],
demonstrating that centralized, global sensor localization could
be achieved without resorting to iterative optimization algorithms
that don’t always converge to the global maxima. The method in
[7] has also generated interest because of its optimality properties
when ranging errors are i.i.d. and Gaussian. However, practical
RF environments are often characterized by non-Gaussian range
errors, and most range estimation methods degrade with increas-
ing distance. This effect is particularly severe in the DC localiza-
tion problem. Since the slope of the correlation as a function of
range approaches zero as range increases, it becomes impossible
to accurately estimate range between two distant sensors.

Recently, attempts to recover a lower dimensional manifold
from data points in a high dimensional space have generated tech-
niques such as Isomap [8], locally linear embedding (LLE) [9],
and Hessian LLE (HLLE) [10]. In contrast to MDS, these meth-
ods do not assume that measurements are linearly related to range.
Instead, they use assume linearity in a small local area, in the area

III - 8570-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



containing a sensor and its K nearest neighbors, and then learn the
global shape of the manifold. In Isomap, the distance between each
pair of non-neighboring devices is estimated to be the sum length
of the shortest path between them in the network (also used in [7]).
The LLE and HLLE algorithms do not use distance estimates, in-
stead, they find weights such that each device’s coordinates can be
represented as a weighted sum of its nearest K neighbors’ coordi-
nates. These techniques are non-parametric in that they learn the
functional dependence of the data on the true range. In Section 4,
we compare the simulated performance of the Isomap, LLE, and
HLLE-based sensor location estimators to the Cramér-Rao bound
(from Section 2.1).

2. SPATIALLY CORRELATED SENSOR DATA MODEL

We denote the coordinate of the ith device as zi = [xi, yi]
T . We

assume that there are n blindfolded devices which do not know
their own location, {zi}n

i=1, and m reference devices which have
a priori knowledge of their coordinates, {zi}n+m

i=n+1. Our estima-
tion problem is the estimation of the unknown coordinates � =
[xT ,yT ]T , where x = [x1, . . . , xn]T and y = [y1, . . . , yn]T .

At each time t, sensor i measures data wi(t). Here, we assume
that the data measured by sensors 1 . . . n + m at time t, w(t) =
[w1(t), . . . , wn+m(t)]T are jointly Gaussian with mean � not a
function of �, and covariance matrix R(�),

[R(�)]i,j = σ2ϕ(‖zi − zj‖), (1)

where ϕ(d) is a normalized isotropic covariance function. The
assumption that covariance between two sensors’ data is only a
function of the distance between them is valid for many appli-
cations [11][12]. This would not hold though, if, for example,
there was some angular dependence such as a consistent wind di-
rection which caused higher correlation in a particular angular di-
rection. However, isotropic models form the building blocks for
more sophisticated non-isotropic or non-stationary models [13].
We further assume the covariance function is non-negative, thus
ϕ : [0,∞) → [0, 1]. In the statistical literature, a popular model
for ϕ is the powered exponential class [13],

ϕ(d) = exp (−(d/δ)α) , (2)

where 0 < α ≤ 2 and δ > 0 are constants. Another popular
model in the environmental and geological sciences is the spherical
model, which has a zero correlation beyond a cut-off distance [13].
We assume, for simulation, that sensor data recorded at different
time instants {w(t)}τ

t=1 are i.i.d. In reality, sensor data is likely
to be correlated in time, which would reduce the effective duration
of the time sample.

2.1. Cramér-Rao Bound Formulation

The Fisher information matrix F for this case is [14],

[F(�)]k,l =
τ

2
tr
�
R−1(�) ∂R(�)

∂θk
R−1(�) ∂R(�)

∂θl

�
, (3)

where k, l ∈ {1, . . . , n}. Analytical simplification of (3) isn’t
generally feasible, and F(�) must be calculated. Let x̂i and ŷi be
unbiased estimators of xi and yi. The trace of the covariance of

the ith location estimate satisfies

σ2
i � tr {cov�(x̂i, ŷi)} = Var�(x̂i) + Var�(ŷi)

≥ �
F−1(�)

�
i,i

+
�
F−1(�)

�
n+i,n+i

(4)

We note that the CRB is not a function of σ2, and is inversely
proportional to the length of the sampling interval τ . The behavior
as a function of the distance constant δ in (2) is more complicated.
If δ → ∞ or δ → 0, then ∂R(�)

∂θk
→ 0 for all k, and thus the vari-

ance bound → ∞. Thus, the performance of correlation location
will be best at some intermediate δ.

3. LOCALIZATION ALGORITHM

In this section, we describe how manifold learning algorithms are
applied to estimate sensor localization. Initially, each sensor i =
1 . . . n + m records data wi(t), for time t = 1 . . . τ . Then, after
time τ , each sensor sends its data to its immediate neighbors. De-
fine ki as the number of sensors with which sensor i can directly
communicate. If ki < K, sensor i queries sensors that are one
or more hops away from itself. If ki ≥ K, sensor i only receives
data from those ki sensors. Sensor i calculates Euclidean distance
in �τ between its own data and its neighboring sensors’ data. We
define Ni to be the set of K sensors which have data closest to
sensor i’s data.

Next, the Isomap, LLE, or HLLE algorithm is applied using
the local Euclidean distance values as input. Detailed descriptions
of these algorithms are given in [8][9][10], and we have used Mat-
lab code available from the authors’ web sites. The LLE and the
HLLE are particularly distributable. They first require each sen-
sor to estimate a weight for each sensor in Ni. The LLE solves
a linear least-squares problem to estimate the local weights [9].
The HLLE calculates a singular value decomposition and uses
Gram-Schmidt orthonormalization to estimate each local Hessian
[10]. Both methods use only the data of sensor i and those in
Ni, and only output non-zero weights for sensors in Ni. Since
K � (n+m), the weight matrix formed from these local weights
is sparse. Next, each algorithm requires finding the eigenvectors
corresponding to the three smallest eigenvalues of a large, sparse,
and symmetric weight matrix, a problem which has much appli-
cation across science and engineering [15]. Various distributed
and scalable algorithms exist and were compared in [16]. In par-
ticular, if sensors select local cluster-heads, the distributed algo-
rithm can use data-distribution techniques to reduce communica-
tion and block-Jacobi preconditioning methods. The Isomap algo-
rithm requires calculation of the shortest path between each pair of
sensors, which can be accomplished via various networking pro-
tocols. However, the Isomap algorithm then requires the eigen-
decomposition of a dense matrix, which is not as scalable or dis-
tributable as that of a sparse matrix. Thus the LLE and HLLE are
preferred for distributed localization.

Once the manifold learning algorithms output a relative map
of sensor coordinates, we use our a priori reference device co-
ordinates find a rotation, scaling, and possible mirroring so that
the reference coordinate estimates match the known coordinates in
a least-squares sense. Since this final optimization involves only
m � n device coordinates, calculation can be implemented on
a single device. The outputs, a rotation, scale factor, and possible
mirroring are then broadcast to the blindfolded devices so that they
can calculate their final coordinate estimate {ẑi}n

i=1.

4. SIMULATION EXAMPLES

The above algorithms are implemented in Matlab. All simulations
are run using a 1m by 1m square area. The results would scale if
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the dimensions (and δ) are increased proportionally. We use the
powered exponential class of covariance functions (2) with δ = 1
and α = 1. Four sensors in the corners are reference devices (co-
ordinates are known exactly), and 45 additional sensors are blind-
folded. Thus m = 4 and n + m = 49. We find for HLLE,
K = 11, and for LLE and Isomap, K = 7, seem to work best.
For each test described below, we fix a particular geometry of de-
vices and then run 100 trials, from which we calculate the means
and 1-σ uncertainty ellipses of the 45 blindfolded sensor location
estimates.

First, we investigate the performance when sensors are placed
on a regular 7 by 7 grid. We set τ = 200 and compare the perfor-
mance of the LLE, HLLE, and Isomap algorithms to the CRB in
Figs. 1(a),(b), and (c). The LLE and HLLE estimators have vari-
ance close to the CRB. While the HLLE is nearly unbiased, the
LLE and Isomap estimates have high bias - local linearity is only a
rough approximation in this problem, and thus accurate distances
between devices are not preserved. Next, we test the performance
of the HLLE algorithm when the sensor positions are perturbed
from their original grid locations. If �1 is the vector of unknown
coordinates used above in the 7 by 7 grid example, then here, we
use �2 = �1+e, where e ∼ N (0, σ2

eI). Here, we set σe = 1/18,
ie., 1/3 of the distance between devices in �1. The results for a
particular geometry of sensors is shown in Fig. 1(d). There are sen-
sors which have significant bias in their and estimator variances
have increased. In particular, the HLLE tends to spread out the
coordinate estimates of very close neighbors.

Finally, we test a random deployment, ie., the case when xi

and yi are uniformly distributed in [0, 1] for all i. This random de-
ployment is much more dispersive than the perturbed grid, since
there is no guarantee of average device density throughout the
square area. In Fig. 1(e) and (f), we show the performance of
the Isomap and HLLE algorithms for a particular realization of the
uniformly random sensor deployment. Here, we needed τ = 500
in order to see reasonable performance for both estimators. Both
estimators show bias and similar variances, but some of the Isomap
estimates are severely biased and show much higher variance. The
HLLE algorithm preserves the general shape of the network.

However, we find that the performance of the HLLE algorithm
is not always robust. For some uniform random deployments of
sensors, the noise in the measurements can cause the locally linear
approximation made by the HLLE to be inaccurate. As SNR de-
creases (ie, as τ decreases), estimator performance can fall sharply,
and degenerate solutions result. In particular, deployments that
have high sensor density in one area but very low density in an-
other area do not perform well in the HLLE algorithm.

5. CONCLUSION AND FUTURE WORK

Manifold learning approaches can be very useful for sensor lo-
calization in networks which wish to reduce overhead by using
only the correlation in their data as location information. Further-
more, this estimation is particularly adapted to be performed in a
scalable, distributed manner using LLE and HLLE. Finally, HLLE
appears to show the best performance in terms of the tradeoff be-
tween estimator bias and variance. Future research in the localiza-
tion of sensors using manifold learning techniques must address
robustness issues in random sensor deployments. We also note
that the manifold learning approach taken here can be extended to
provide non-linear interpolation for field estimation. We believe
that, due to the distinct advantages of manifold learning, future re-

search applying these techniques to estimation in wireless sensor
networks will be particularly fruitful.
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Fig. 1. Estimator mean (�) and 1-σ uncertainty ellipse (- - - -) for each blindfolded sensor compared to the true location (·) and CRB on
the 1-σ uncertainty ellipse (——), when the estimator is (a) LLE, (b) HLLE, (c) Isomap, (d) HLLE, (e) Isomap, and (f) HLLE. For HLLE,
K = 11, and for LLE and Isomap, K = 7. In (a-d), τ = 200, and in (e-f) τ = 500. One reference device (x) is in each corner, and the
blindfolded devices are (a-c) located on a 7 by 7 grid, (d) permuted from the 7 by 7 grid by Gaussian random vectors, or (e-f) chosen from
a uniform random distribution on [0, 1] × [0, 1].
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