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ABSTRACT

This paper considers the problem of fusing the statisti-
cal information gained by a distributed network of sen-
sors. We formulate the problem as a convex feasibility

problem, that is, finding a point in the intersection of
finitely many closed convex sets. We then present a
distributed optimization algorithm to solve the prob-
lem.

1. INTRODUCTION

Widespread availability of cheap embedded processors
combined with easily accessible wireless networks al-
low for a wide variety of devices and machines to be
connected. We can now build a large-scale yet afford-
able information system using low-cost sensors inter-
connected through a wireless communication network.
A distributed network of sensors can be highly scal-
able, cost effective, and robust with respect to individ-
ual node’s failure. However, it creates new challenges
in terms of how the information provided by the sensors
in the network is to be processed.

The development of signal processing algorithms
designed expressly for sensor network applications is
an emerging interdisciplinary research area with deep
connections to information theory, networking and dis-
tributed algorithms. In this paper, motivated by the
developments mentioned above, we study the problem
of estimating the power spectrum of a physical signal
when the signal is observed by a network of distributed
sensors. This problem has numerous potential applica-
tions in such areas as acoustical engineering, oceanog-
raphy and geophysics.

Example 1 Consider the simple scenario where a sound
source (a speaker) is listened to by a network of mi-
crophones put at various known locations in a room
(Fig. 1). Because of reverberation and other artifacts,
the signal arriving at each microphone is different. The
microphones (which constitute the sensor nodes in our
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Figure 1: A simple sensor network setup

network) are equipped with sampling devices, sufficient
signal processing hardware and some communication
means. Each sensor node can process its observed data,
come up with some statistical inference about it and
share the result with other nodes in the network. How-
ever, to save energy and communication bandwidth,
the network nodes cannot share their raw data (i.e.
the local observed signals) with each other.

Now, how should the network operate so that we get
an estimate of the power spectrum of the sound source
reflecting the observations made by all the nodes? ♦

The problem posed in Example 1 is more challeng-
ing than classical spectrum estimation problems con-
sidered in the literature. This is because, here, the
observed data must be processed in a distributed way
at network nodes. In the next section, we will build a
mathematical model for the problem posed in Exam-
ple 1. Our formulation, nevertheless, is quite general
and can be applied to other application areas as well.

Notation: Vectors will be denoted by capital letters.
Script capital letters are used to denote sets. The
spaces of Lebesgue-measurable functions are represented
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by L1(a, b), L2(a, b), etc. The end of an example is in-
dicated using the symbol ♦.

2. PROBLEM FORMULATION

Let x(n) denote a discrete version of the signal pro-
duced by the source and assume that it is a zero-mean
Gaussian wide-sense stationary (WSS) random process.
The sampling frequency fs associated with x(n) is arbi-
trary and depends on the frequency resolution desired
in the spectrum estimation process. It is well-known
that a complete statistical description of a WSS pro-
cess is provided by its autocorrelation sequence

Rx(k)
�
= E{x(n)x(n + k)}

or, equivalently, by its power spectrum

Px(ejω) =
∞∑

k=−∞

Rx(k)e−jωk.

The autocorrelation sequence is a time-domain descrip-
tion of the second order statistics of a random process.
The power spectrum provides a frequency domain de-
scription of the same statistics. The reader is referred
to [1] for an overview of modern spectrum estimation
techniques and their applications. We denote by vi(n)

� � � � � � � �� 	 
 � � �� � � �� �

Figure 2: The relation between the signal vi(n) ob-
served by the ith sensor and the original source signal
x(n).

the signal produced at the front end of the ith sensor
node. We assume that vi(n) are related to the origi-
nal source signal x(n) by the model shown in Fig. 2.
The linear filter Hi(z) in this figure models the com-
bined effect of room reverberations, the microphone’s
frequency response and an additional filter which the
system designer might want to include. The decimator
block which follows the filter represents the (potential)
difference between the sampling frequency fs assumed
for the original signal x(n) and the actual sampling fre-
quency of the sensors’ sampling device. Thus, the sam-
pling frequency associated with vi(n) is fs/M where M
is a fixed natural number.

The signals vi(n) in Fig. 2 are also WSS processes.
It is straightforward to show that the autocorrelation
coefficients Rvi

(k) associated with vi(n) are given by

Rvi
(k) =

1

2π

∫ π

−π

Px(ejω)|Hi(e
jω)|2ejNikωdω. (1)

The above formula shows that Px(ejω) uniquely spec-
ifies Rvi

(k) for all values of k. However, the reverse
is not true. That is, in general, knowing Rvi

(k) for
some or all values of k is not sufficient for characteriz-
ing Px(ejω) uniquely.

Recall that vi(n) is a WSS signal so all the statis-
tical information that can be gained about it is con-
fined in its autocorrelation coefficients. One might use
the signal processing hardware available at each sen-
sor node and estimate the autocorrelation coefficients
Rvi

(k) for some k, say 0 ≤ k ≤ L − 1. Now, we may
pose the sensor network spectrum estimation problem
as follows:

Problem 1 Let Qi,k denote the set of all power spectra

which are consistent with the kth autocorrelation coef-

ficient Rvi
(k) estimated at the ith sensor node. That

is, Px(ejω) ∈ Qi if

1

2π

∫ π

−π

Px(ejω)|Hi(e
jω)|2ejMkωdω = Rvi

(k),

Px(ejω) ≥ 0,

Px(ejω) = Px(e−jω),

Px(ejω) ∈ L1(−π, π).

Define Q
�
=

⋂N

i=1

⋂L−1
k=0 Qi,k where N is the number

of nodes and L is the number of autocorrelation coeffi-

cients estimated at each node. Find a Px(ejω) in Q.

It is possible to show that the sets Qi,k are closed
and convex [2]. The problem of finding a point in the
intersection of finitely many closed convex sets is known
as the convex feasibility problem and is an active area
of research in applied mathematics.

If we ignore measurement imperfections and assume
that the observed autocorrelation coefficients Rvi

(k)
are exact, then the sets Qi,k are non-empty and ad-
mit a non-empty intersection Q as well. In this case
Q contains infinitely many Px(ejω). When the mea-
surements vi(n) are contaminated by noise or Rvi

(k)
are estimated based on finite-length data records, the
intersection set Q might be empty due to the poten-
tial inconsistency of the autocorrelation coefficients es-
timated by different sensors. Thus, Problem 1 has ei-
ther no solution or infinitely many solutions. In either
case, it is ill-posed1.

1A problem is called well-posed (more precisely, well-posed
in the sense of Hadamard) if i) for all admissible data it has a
solution, ii) the solution is unique and iii) the solution depends
on the data continuously. Otherwise, the problem is considered
ill-posed.
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3. THE METHOD OF GENERALIZED

PROJECTIONS

An elegant way to approach the convex feasibility prob-
lem is to employ generalized projections [3]. A projec-
tion of a given point onto a convex set is defined as
another point which has two properties. First, it be-
longs to the set onto which the projection operation is
performed and, second, it renders a minimal value to
the distance between the given point and any point of
the set (Fig. 3).

Y

XX*

Q

||X-Y||
Y

X

X*

Q

D(X,Y)

Figure 3: Symbolic depiction of metric projection (left)
and generalized projection (right) of a vector Y into a
closed convex set Q. In the left figure, the projection
X∗ is selected by minimizing the metric ||X − Y || over
all X ∈ Q while in the right X∗ is found by minimizing
the generalized distance D(X,Y ) over the same set.

If the Euclidean distance ||X − Y || is used in this
context then the projection is called a metric projec-
tion . In some applications, such as the one considered
here, it turns out to be very useful to introduce more
general means to measure the “distance” between two
vectors2. A generalized distance is a real-valued non-
negative function of two vector variable D(X,Y ) de-
fined in a specific way such that it’s value may repre-
sent the distance between X and Y in some generalized
sense. When defining generalized distances, it is cus-
tomary not to require the symmetry condition. Thus,
D(X,Y ) may not be the same as D(Y,X). Moreover,
we do not insist on the triangle inequality that a tra-
ditional metric must obey either.

Example 2 Let P1(e
jω) > 0 and P2(e

jω) > 0 be two

2The functional form of the solution will depend on the choice
of the generalized distance used in the projection. Obtaining a
particular functional form which is easy to manipulate or inter-
pret is often the main reason for using a generalized distance
instead of the conventional Euclidean metric.

power spectra in L1(−π, π). The functions

D1(P1, P2) =

∫ π

−π

(P1 − P2)
2
dω,

D2(P1, P2) =

∫ π

−π

(
P1 ln

P1

P2
+ P2 − P1

)
dω,

D3(P1, P2) =

∫ π

−π

(
P1

P2
− ln

P1

P2
− 1

)
dω,

can be used to measure the generalized distance be-
tween P1(e

jω) and P2(e
jω). These functions3 are non-

negative and become zero if and only if P1 = P2. ♦

Using a generalized distance such as the functions
mentioned in the above example, we can convert our
convex feasibility problem (Problem 1) into a minimiza-
tion problem:

Problem 2 Let Q be defined as in Problem 1. Find

P ∗
x (ejω) in Q such that

P ∗ = arg min
P∈Q

D(P, P0), (2)

where P0(e
jω) is an arbitrary power spectrum, say P0(e

jω)
= 1,−π ≤ ω < π.

When a unique P ∗ exists, it is called the generalized
projection of P0 onto Q. For our application here we
do not require a unique solution. Nonetheless, it can
be shown that the generalized distances D1 and D2 in
Example 2 lead to a unique solution. The choice D3

will lead to a unique solution too but ceratin singular
power spectra must be excluded from the space of valid
solutions [4].

4. DISTRIBUTED CALCULATION OF

GENERALIZED PROJECTIONS

A very interesting aspect of the generalized projections
formulation is that the solution P ∗ ∈ Q can be found
using a series of projections onto the intermediate sets
Qi,k. These intermediate projections can be computed
locally at each sensor node thus allowing the compu-
tations to be done simultaneously and in a highly dis-
tributed fashion.

In this section, we first calculate the generalized
projection of a given power spectrum onto the sets Qi,k

for the sample distance functions introduced in Exam-
ple 2. Then, we propose a distributed algorithm for

3Note that D1 is simply the Euclidean distance between P1

and P2. The functions D2 and D3 have roots in information
theory and statistics. They are known as the Kullback-Leibler
divergence and Burg cross entropy, respectively.
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calculating the final solution P ∗ from these intermedi-
ate projections.

Let P[P1 �→Qi,k;Dj ] denote the power spectrum result-
ing from projecting a given power spectrum P1 onto the
set Qi,k using a given distance functions Dj . That is,

P[P1 �→Qi,k;Dj ]
�
= arg min

P∈Qi,k

Dj(P, P1). (3)

Using standard techniques from calculus of variations
we can show that the generalized distances D1, D2 and
D3 introduced in Example 2 result in projections of the
form

P[P1 �→Qi,k;D1] = P1(e
jω) − α|Hi(e

jω)|2 cos(Mkω),
P[P1 �→Qi,k;D2] = P1(e

jω) exp
(
−β|Hi(e

jω)|2 cos(Mkω)
)
,

P[P1 �→Qi,k;D3] =
(
P1(e

jω)−1 + γ|Hi(e
jω)|2 cos(Mkω)

)−1
,

where α, β and γ are parameters (Lagrange multipli-
ers). These parameter should be chosen such that in
each case P[P1 �→Qi,k;Dj ] ∈ Qi,k. That is,

∫ π

−π

P[P1 �→Qi,k;Dj ]|Hi(e
jω)|2ejMkωdω = 2πRvi

(k). (4)

The reader may observe that the above equation leads
to a closed-form formula for α but in general finding β
and γ requires numerical methods.

The projection formulae developed above can be
employed in a variety of iterative algorithms to find a
solution in the intersection of Qi,k [5]. Here, we opt for
a particular algorithm that combines successive projec-
tions onto Qi,k with a kind of generalized averaging to
generate a sequence of solutions P (m) which will even-
tually converge to a P ∗ ∈

⋂
i,k Qi,k. We call this algo-

rithm the Star Algorithm since its data flow is similar
to a star pattern. The main steps of the Star Algorithm
are outlined in the box at the top right of this page.

5. CONCLUDING REMARKS

When the autocorrelation estimates Rvi
(k) are accu-

rate, the Star Algorithm will generate a solution in Q
but when Rvi

(k) are not estimated accurately, the in-
tersection set Q might become empty. In this case, the
Star Algorithm converges to a solution whose average
generalized distance from the feasible sets Qi,k is min-
imum [6].

Lack of space prohibits a thorough discussion of the
practical computational issues associated with the Star
Algorithm here. For the same reason, illustrative simu-
lation examples are not provided either. We invite the
reader to visit the website www.multirate.org where
further material supplementing this paper will be main-
tained.

The Star Algorithm

Input: A distance function D(P1, P2), an initial
power spectrum P0(e

jω), the sensor frequency responses
Hi(e

jω), the autocorrelation estimates Rvi
(k) and a tol-

erance parameter ε > 0.
Output: A power spectrum P∗(e

jω) ∈ Q.
Procedure:

1. Let m = 0 and P (0) = P0.

2. Send P (m) to all sensor nodes.

⇒ at the ith sensor node:

(i) Let n = 0 and define P̃ (n) = P (m).

(ii) Calculate P̃k = P[P̃ (n) �→Qi,k;Dj ] for all k.

(iii) Increase n by 1 and calculate P̃ (n) =
arg min

∑
k

D(P, P̃k).

(iv) If D(P̃ (n), P̃ (n−1)) > ε go to Step (ii) and

repeat. Otherwise, define P
(m)
i = P̃ (n) and

send it to the central unit.

3. Receive P
(m)
i from all sensor nodes.

4. Increase m by 1 and calculate P (m) =
arg min

∑
i
D(P, P

(m−1)
i ).

5. If D(P (m), P (m−1)) > ε, go to Step 2 and repeat.
Otherwise stop and output P ∗ = P (m).
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