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ABSTRACT

Distributed binary quantizer design for sensor nets tasked
with a hypothesis testing problem is considered in this pa-
per. Allowing for non-ideal transmission channels, we show
that under the conditional independence assumption, the op-
timum binary quantizer, in the sense of minimizing the er-
ror probability, should operate on the likelihood ratio (LR)
of the local sensor observations. Necessary conditions for
optimality are derived to facilitate finding of optimal LRT
thresholds through an iterative algorithm. A design exam-
ple with binary symmetric channels between local sensors
and the fusion center is given to illustrate how the results
can be applied in sensor signaling design.

1. INTRODUCTION

The emerging wireless sensor network (WSN) technologies
have spurred enormous interest from various research com-
munities. The potential of collecting and jointly process-
ing spatially and temporally distributed information will im-
mensely enhance our ability to understand and evaluate com-
plex systems and environments. Current and future applica-
tions include battlefield surveillance, telemedicine, habitat
and environmental monitoring and control.

One of the challenges facing many envisioned applica-
tions is to communicate locally collected data to a decision
making center under strict bandwidth/resource/delay con-
straints. Data compression at local sensors is inevitable.
Motivated by the Slepian-Wolf theorem [1], much of cur-
rent effort has focused on distributed data compression that
exploits the correlation structure among sensor observations
[2,3]. These approaches are largely data centric — the pri-
mary goal is to recover the original sensor data at the de-
cision center (also called fusion center, decoder, etc.). For
many WSN, the ultimate goal is successful assessment of
a certain situation instead of recovering the original data
observed at local sensors. A data-centric approach with-
out regard to the underlying inference task will undoubtedly
waste significant resources.

In this paper we explore the optimal distributed data
compression scheme that caters to a specific inference task,
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namely distinguishing between two hypotheses. Examples
include the detection of a target in surveillance applications
and of a hazardous event for environment and security ap-
plications. To simplify our analysis and ease our presen-
tation, we assume that a binary local sensor output is de-
sired. A distinctive feature of this work, in addition to be-
ing inference-centric, is that the developed binary quantizer
is channel aware. Transmission channel characteristics be-
tween the local sensors and the fusion center are integrated
in the design of local quantizers. Thus the result can be per-
ceived as channel optimized distributed binary quantizers.
It thus leads to a promising direction for the applications
of joint source channel codes (JSCC) in distributed sensor
networks. We note that for point-to-point communications,
source quantization and channel error protection have been
jointly considered for zero memory signaling (see the early
work in [4,5]). The discussions and techniques developed
there, while certainly enlightening, cannot be directly ap-
plied to the WSN applications because of the distributed
nature. Further, the techniques are designed on the premise
that the goal is to recover the original observation (hence the
MSE criterion used in coder/decoder design) rather than for
any underlying inference problems. Separately in [6], quan-
tization for decentralized hypothesis testing was considered.
Jointly optimal quantizer design (in the sense of maximiz-
ing the Bhattacharyya distance) at all sensors are obtained
via the Lloyd algorithm. The channel effect is, however,
idealized in that it only imposes rate constraints.

We show that, under the conditional independence as-
sumption among sensor observations, the optimal binary
quantizers amount to a likelihood ratio test (LRT), i.e., the
optimal quantization happens on the likelihood ratio (LR)
domain rather than the original observation . Perceived from
a different viewpoint, our work establishes the optimality of
LRT at the local sensors in the presence of non-ideal trans-
mission channels. Notice that such optimality has been es-
tablished without the consideration of transmission chan-
nels [7-9], i.e., the local sensor binary decisions were as-
sumed to be fully accessible at the fusion center.

IThe latter is true if the distributions under test have monotone likeli-
hood ratios.
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The design of local decision rules accounting for possi-
ble channel errors has been addressed under the Neyman-
Pearson (NP) criterion [10]. There, optimality of the LRT
was established under a simple binary symmetric channel
(BSC) model between each sensor and the fusion center.
In this paper, we assume a general vector channel from the
local sensors to the fusion center and investigate the opti-
mality of the LRT for local sensor decisions. The Bayesian
criterion is adopted to minimize the error probability at the
fusion center. The paper is organized as follows. In the next
section, we introduce the problem formulation. In section
3, we present our main result (Theorem 1), along with some
discussions and a sketch of proof. A simple design example
is given in section 4 and we conclude in section 5.

2. PROBLEM FORMULATION

Consider a hypothesis testing problem with distributed sen-
sors collecting conditionally independent observations, i.e.,

K
p(X1, -+, Xk |H;) = [] p(Xk|Hi) €y

k=1
where ¢ = 0,1 and X}’s are local sensor observations,

hence K is the total number of sensors. We further as-

sume that the priors on the two hypotheses are given by

mo = P(Hp) and my = P(H;) = 1 — mp, respectively.

Each local sensor quantizes its observation X j to one bit:
Uk = 7 (Xk)-

Each Uy, is then sent to a channel characterized by p(Y|Uy,)
where Y}, is observed at the fusion center. Hence we have
parallel independent channels connecting the sensors to the
fusion center, i.e.,

K
P(Ka7YK|U177UK):HP(YIC|U1€) (2)

k=1
The fusion center is assumed to implement the optimum fu-
sion rule based on the channel output Y = [Y71,---,Yk]T:

Uo = 70(}/177YK)
Thus a decision error happens if Uy differs from the true
hypothesis. Prominent examples of the channel p(Y},|Uy)
include the binary symmetric channel [10] and the fading
channel model [11]. A simple diagram illustrating the above
fusion network is given in Fig. 1.
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Fig. 1. A block diagram for a wireless sensor network
tasked with binary hypothesis testing in the presence of non-
ideal transmission channels.

3. OPTIMUM BINARY QUANTIZER DESIGN

We use person-by-person optimization (PBPO) which opti-
mizes the binary quantizer vy (X}) for the k*" local sensor
given fixed quantizers for all other sensors as well as the fu-
sion (decoding) rule. Given the hierarchical structure as in
Fig. 1, we have the following result.

Theorem 1 Assume that the local observations, X}’s, are
conditionally independent and that the channels between
sensors and the fusion center are characterized by

K
p(Yi,- -, Yi|Us,- -, Uk) = [[ p(ValU:) 3
k=1

If the fusion rule and the k** local decision satisfy
P(Uo =1y", Uy =1)— P(Uo = 1ly*,Ux =0) > 0 (4)
P(Uop =0ly", U =0) — P(Up = 1|y",Ur = 1) > 0 (5)
where y* = [y1, -, Yk—1,Yr+1, -+, Yi), with yy, being
the observation of the channel output corresponding to the

k" sensor, then the optimum local binary quantizer for the
k" sensor amounts to the following LRT

. zr H o
L fm > B
Uk = 7(Xk) = (6)

e p(@lH) _ m
0 if SmTmy < mom

where 1 is defined as
Jyx[P(Uo = 1|y*, Uy = 1) - P(Uo = 1|y", Ux = 0)lp(y*|Ho)dy"
Jyu[P(Uo = 0ly*, Uy, = 0) — P(Up = 0|y*, Uy = 1)]p(y*|H1)dy*

Prior to presenting a proof, some remarks are in order.

e Conditions (4) and (5) amount to requiring that the
fusion output, conditioned on the same set of chan-
nel outputs except for that of the k** sensor, is more
likely to be consistent with the k%" sensor output than
to contradict it. Thus loosely speaking, this amounts
to employing a “monotone” fusion rule, hence (4) and
(5) are easily satisified by any sensible design.

e The PBPO approach implies that the obtained result
is a necessary, not sufficient, condition for optimal-
ity. Multiple initializations may be needed to obtain
global optimum.

e The test described in (7) for the k*" sensor is clearly
coupled with the fusion rule as well as all the other
sensors’ local decision rules. Thus, applying The-
orem 1 requires iteration among all the local sensor
decision rules and the fusion rule.

e A close inspection of 7y (+) in (7) also shows that the
threshold for the LRT is directly affected by the trans-
mission channels (embedded in both P(Uy|y*, Uy)
and p(y*|H;)), indicating that the optimal sensor pro-
cessing needs to be channel informed.
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Sketch of proof

Expanding the error probability with respect to the quan-
tizer rule at the n*" sensor using the hierarchical probability
structure specified in Fig. 1, we can get, after some algebra,

pe():/ P(ux = 1|z4) [rop(zx| Ho) A — m1p(ax|Hy)B] doy+C
' )

where

A:/yP(uo =1ly)

> p(ylu™')P(u*|Ho) Zp (y[u"*)P(u"|Ho) | dy
—uk -
B:/ Pluo = Oly)
y
> p(y|u*) P(u*|Hy) Zp (y|u*")P(u*|H:) | dy
L uk _

C= / [mp x| Ho) /P uo = 1ly) Zp (y[u"®) P(u"|Ho)dy+

mip(we|Hy) / Pluo = 0ly) 3 ply[u*®) P(u® | Hy)dy |de
y uk

with
E_ [Ul,"'7uk717uk+17"'7uK]7
x¥ = [z1,00, o1, Thgrs 0, TK)
uf! [wi,- s Up—1,ur = 1, Ugq1, -, UK],
u? = [wg, - up—1,Up = 0,Ugt1," -, UK],

Clearly C is a constant with regard to Uy,. To minimize Py,
one can see from (7) that the optimal quantizer rule for the
nt" sensor is

0 mop(zk|Ho)A > mip(zk|H1)B
P(uk = 1|$k) =

If further

1 Otherwise

A > 0 ®)
B > 0 ©))

then the local decision rule amounts to a LRT as in Theo-
rem 1. Further, equation (8) can be rewritten as, after some
simplifications,

/ [P(uo =1ly*up =1)
-
—P(uo = 1)y*, i = 0)] p(y"|Ho)dy"
Clearly, A > 0if

P(up = 1|y*,up = 1) = P(ug = 1|y"*,uy = 0) > 0
Similarly we can show that (9) is true if

P(up = 0ly*,ug = 0) — P(ug = 0y"*,up =1) > 0

Thus Theorem 1 is proved.

A =

4. A DESIGN EXAMPLE

In this section, we use a two-sensor example to demonstrate
how to obtain the optimal local thresholds for the binary
quantizers. Consider the detection of a known signal S in
additive Gaussian noises that are independent and identi-
cally distributed (i.i.d.) between the two sensors, i.e.,

X, =S5+ Ny
for k = 1,2 with N; and N» being i.i.d. N'(0,02). With-
out loss of generality, we assume S = 1 and 02 = 1.

Each sensor quantizes its observation X to a binary bit,
Ui = v, (Xg), which is then transmitted through a BSC
with identical crossover probability a for both sensors. We
first look at the conditions specified in (4) and (5). Using
the Gaussian assumption and BSC model, we can derive

A =[P(uo = 1|y = 1,y2) — P(uo = 1y1 = 0,y2)] (1 — 2a)

Thusif 1) a < 0.5and 2) P(ug = 1|ly1 = 1,y2) > P(uo =
1lys = 0,y2), then A > 0. Notice condition 2) amounts to
using a monotone fusion rule [12]. On the other hand, if
o > 0.5, one can easily show that the optimal fusion rule
should be ‘reverse’ monotone and we still have A > 0. For
condition (5), a similar argument can be made. Thus the
optimum local decision rule is always a LRT no matter what
the parameters are.

Thus Theorem 1 allows us to design the following itera-
tive procedure to obtain optimal quantizers at local sensors.

1. Initialize 71 and 7.

2. Obtain the optimal fusion rule for fixed 71 and 7».
3. For fixed fusion rule and 72, calculate 7y using (6).
4. Similarly for fixed fusion rule and 71, calculate 7».
5

. Check convergence, i.e., if the obtained 7; and 7 are
identical (up to a prescribed precision) to that of the
previous iteration. If yes, stop; otherwise, go to 2.

Notice that for the Gaussian problem, the LR is linear in the
observation hence the quantizer applies directly on the ob-
servation with appropriate threshold translation. Below are
two different parameter settings and the respective results.

e 19 = 0.8 and @ = 0.1. For this example, the itera-
tion always converges to the same point 71 = T =
1.0808, suggesting this may be the global optimum.
This is confirmed in Fig. 2 where analytically calcu-
lated minimum achievable error probabilities for dif-
ferent 71 and 7» are plotted that shows a unique min-
imum point at (1.0808, 1.0808) with P.o = 0.1909.
Further, the error probability is capped at 0.2. This is
sensible given my = 0.8: one should do no worse than
to ignore the local sensor decision and decide H .

e mp = 0.5 and a = 0.1. This is the equal prior case.
For this example, the iteration converges to two dif-
ferent points depending on the initialization: 71 =
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75 = 0.9538 and 71 = 75 = 0.0462. Fig. 3 is the min-
imum achievable error probability plot for different
71 and 7o. It turns out that both points achieve iden-
tical error probability performance at P,y = 0.3259,
hence both are global minimum.

Not surprisingly, all the local minimum points are symmet-
ric, i.e., 71 = T2. Notice that while non-identical optimal
local thresholds are possible (see, e.g., [13]), it usually hap-
pens only for discrete local sensor observations with care-
fully selected probability mass functions.

S. CONCLUSIONS

For a sensor fusion network, incorporating transmission chan-
nels in the system design may prove useful in resource con-
strained applications, such as the emerging field of wireless
sensor networks. In this paper, we derive the optimal thresh-
olds for joint local binary quantizer design for a hypothesis
testing problem under the Bayesian criterion. This design
procedure is then applied to a distributed detection example
with a known signal and Gaussian noises and binary sym-
metric channels between sensors and the fusion center. Con-
sidered as channel optimized distributed binary quantizers,
this work may lead to interesting and novel applications of
JSCC in inference-centric wireless sensor networks.
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Fig. 2. Minimum achievable error probability for 7o = 0.8
as a function of (71, 72).
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Fig. 3. Minimum achievable error probability for 7o = 0.5
as a function of (71, 72).
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