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ABSTRACT

In this paper, we investigate properties of good coding strate-
gies for a class of wireless sensor networks that could be
termed “monitoring” networks: Their task is to monitor an
underlying physical reality at the highest possible fidelity.
Since the sensed signals are often analog, and the communi-
cation channels noisy, it will not generally be possible to ex-
actly communicate the sensed signals. Rather, such sensor
network scenarios involve both a compression and a com-
munication problem. It is well known that these two tasks
must be addressed jointly for optimal performance, but op-
timal performance is unknown in general.

This problem is addressed from a scaling-law perspec-
tive in this paper, i.e., as the number of nodes becomes large.
The goal of the paper is to characterize the key properties of
coding strategies that achieve the optimum scaling behav-
ior, and hence to identify the scaling-law relevant issues in
code design. We first present a lower bound to the cost-
distortion tradeoff, and then compare two fundamentally
different coding strategies to that lower bound.

1. INTRODUCTION

The class of sensor networks of interest to this study could
be termed monitoring sensor networks: Their goal is to ob-
serve a physical system over time and space at the highest
possible fidelity. A simple example of such a sensor net-
work was analyzed in [1], and generalizations thereof in [2].
The present paper further investigates the conditions under
which a simple uncoded forwarding strategy attains the op-
timal scaling behavior, and characterizes the properties of
scaling-law optimal codes for certain scenarios.

The sensor network model studied in this paper is shown
in Figure 1. There is a physical phenomenon, characterized
by L variables, representing the degrees of freedom of the
system, or, equivalently, its current state. We model each
degree of freedom as a random process in discrete time.1

1The discrete-time model is justified by arguing that the state of the
system does not change very rapidly. This may be a serious restriction
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Fig. 1. The “monitoring” sensor network topology consid-
ered in this paper.

The underlying L sources are observed through a noisy ob-
servation mechanism by M sensors. As expressed by the
dotted lines in Figure 1, the sensors may have the possi-
bility to collaborate to some (generally limited) extent, and
there may be feedback from the base stations to each of the
sensors. Based on the respective sensor readings, the inter-
sensor communication, and the feedback signals, the sen-
sors communicate to N base stations, for example across
a wireless medium. We assume the N base stations to be
ideally connected through separate links (e.g., wireless, but
over a different frequency band; or a fiber-optical link). The
parameter N , in an appropriate sense, models the spatial
channel bandwidth. For each source sample, the sensors can
use K channel uses (modeling the temporal channel band-
width), and a total power (or, more generally, cost) of Ptot.
The cost is measured at the channel inputs and takes the
shape of an expectation,

Eρ(X1, X2, . . . , XM ) ≤ Ptot. (1)

In some related applications, there may be multiple cost

for certain scenarios. The continuous-time extension is currently under
investigation.
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constraints, modeling the requirement of separate power lim-
its for each sensor, rather than a sum power constraint. Even-
tually, the underlying sources can be reconstructed at a dis-
tortion D, with takes the shape of an expectation,

D = Ed
(
(S1, . . . , SL), (Ŝ1, . . . , ŜL)

)
. (2)

for an appropriately chosen (application specific) distortion
measure d(·, ·).

Our goal is to characterize the fundamental relationships
between the six entities, i.e., L,N,K,M,Ptot, and D, with
particular emphasis on the case where the number of sens-
ing terminals, M , becomes very large. In a second stage,
we also discuss some of the properties of coding strategies
that achieve optimal relationships.

Scaling Law Notation

In this paper, we establish scaling laws, denoted by the sym-
bol ∼, which here is taken to mean “asymptotic equiva-
lence.” More precisely, we write scaling laws as

f1(M) ∼ f2(M), (3)

which simply means that limM→∞ f1(M)/f2(M) = c, for
some constant c > 0. The special case when c = 1 will be
called a strong scaling law, since it correctly reports both
the scaling behavior and the important constants, and will
be denoted as f1(M) =∼ f2(M).

2. GAUSSIAN SENSOR NETWORKS

Of particular interest to the arguments of this paper is a spe-
cial case of the sensor network of Figure 1, namely when
all involved statistics are Gaussian. The resulting scenario
is illustrated in Figure 2. In particular, there are L physical
sources (the spatial or temporal bandwidth of the source),
M sensors, and N receivers (base stations). The receivers
are assumed to be ideally linked to each other: in the con-
sidered network model, the data collection point has access
to the exact received value at each of the N base stations.

2.1. Network Parameters

Source Bandwidth L and Observation Process
The source is characterized by L independent and identi-
cally distributed (iid)2 circularly complex Gaussian random
variables with mean zero and variance σ2

S . The observation
process is modeled as

Um = Wm +
L∑

l=1

am,lSl, (4)

2Assuming iid sources is without loss of generality in the sense that the
matrix A in Eqn. (5) below can be chosen arbitrarily.
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Fig. 2. The considered Gaussian sensor network.

where Wm is iid circularly complex Gaussian with mean
zero and variance σ2

W . We collect the coefficients am,l into
the matrix A ∈ C

M×L defined as

A =

⎛
⎜⎜⎜⎜⎜⎝

a1,1 a1,2 . . . a1,L

a2,1 a2,2 . . . a2,L

a3,1 a3,2 . . . a3,L

...
...

. . .
...

aM,1 aM,2 . . . aM,L

⎞
⎟⎟⎟⎟⎟⎠ (5)

The matrix A has min{M,L} singular values that we de-
note by α1, α2, . . . , αmin{M,L}. The parameter rank(A)
models the product of the spatial and temporal bandwidth
of the underlying source.

For the scope of the present paper, the coefficients am,l

are chosen according to a given distribution, and we suppose
that their values are known throughout the network. Later,
we argue that under certain circumstances, the sensors need
not know these values, and the destination only needs lim-
ited knowledge, without changing the scaling behavior.

Spatial Bandwidth N of the Communication Channel
The communication channel is the standard additive white
Gaussian multiple access channel, modeled as

Yn = Zn +
M∑

m=1

bn,mXm, (6)

where Zn is iid circularly complex Gaussian with mean zero
and variance σ2

Z . For the purpose of the present paper,
the coefficients bn,m are fixed and assumed to be known
throughout the network.3 We collect the coefficients bn,m

into the matrix B ∈ C
N×M defined as

B =

⎛
⎜⎝

b1,1 b1,2 b1,3 . . . b1,M

...
...

...
. . .

...
bN,1 bN,2 bN,3 . . . bN,M

⎞
⎟⎠ (7)

3In [3], we discuss the case where the coefficients bn,m are randomly
chosen, and unknown to the sensors, hence modeling the situation of lim-
ited synchronization between the sensors.
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The matrix B has min{N,M} singular values that we de-
note by β1, β2, . . .. Our interest is in the case where N ≤
M , and in this paper, we consider the case where the matrix
B has full rank. Hence, N models the spatial bandwidth of
the communication channel.

Temporal Bandwidth K of the Communication Channel
The channel can be used K times for each source sample.
This is equivalent to multiplying the bandwidth of the chan-
nel by a factor of K, and hence permits to study the tempo-
ral bandwidth of the channel.

Power on the Communication Channel
The power on the communication channel is constrained as

M∑
m=1

K∑
k=1

E|Xm,k|2 ≤ Ptot, (8)

i.e., Ptot denotes the total power available per source output
(S1, S2, . . . , SL).

Target Distortion
The goal of the sensor network is to minimize the mean-
squared error,

D =
1
L

L∑
l=1

E|Sl − Ŝl|2, (9)

where the expectation is over the distribution of the source
vector S, the distribution of all the noises W1, . . . ,WM , Z,
as well as the distribution of the observation matrix A.

2.2. Lower Bound to the Optimal Distortion Scaling

In [3], we present a lower bound to the distortion that can
be achieved in the Gaussian sensor network defined in Sub-
section 2 for fixed observation matrix A. This lower bound
can be adapted to the case of a randomly chosen matrix A.
For the case of sufficiently large total power Ptot, it takes
the following simple shape:

Theorem 1. The distortion that can be achieved in the Gaus-
sian sensor network defined in Subsection 2, under the as-
sumption that the total sensor power Ptot is large enough
(see Remark 2), cannot be smaller than

Dlower(M,Ptot, L,K,N)

= EA

[
1
L

L∑
l=1

σ2
Sσ2

W

α2
l σ

2
S + σ2

W

]

+ν

⎛
⎜⎝ 1

µ + Ptot

KNσ2
Z

N

√∏N
n=1 β2

n

⎞
⎟⎠

KN/L

, (10)

where σ2
S is the variance of the underlying sources, σ2

W is
the variance of the observation noises, σ2

Z is the variance of
the noise in the multi-access channel, Ptot is the total sensor
transmit power for the K channel uses, N is the number of
destination terminals, and

µ =

(
1
N

N∑
n=1

1
β2

n

)
N

√√√√ N∏
n=1

β2
n (11)

ν = EA

⎡
⎣ L

√√√√ L∏
l=1

α2
l σ

4
S

α2
l σ

2
S + σ2

W

⎤
⎦ . (12)

The proof of this theorem is given in [3].

Remark 1. This outer bound includes the case of arbitrary
collaboration between the sensors, and of arbitrary feedback
signals from the data collection point to the sensors.

Remark 2. In Theorem 1, we assume that Ptot is “large
enough.” For small Ptot, the solution involves inverse water-
filling, i.e., not all of the eigenvalues will be encoded. We
will provide details in [3].

3. ACHIEVABLE SCALING BEHAVIOR

3.1. Separate Source and Channel Coding

It is well known that separate source and channel coding
does not lead to optimal performance in general networks,
but it is generally hard if not impossible to determine the
best separation-based performance. Here, we give a lower
bound to the corresponding distortion scaling law, combin-
ing the rate-distortion results of [5, 6, 7] for the so-called
CEO problem with the capacity of the Gaussian multiple-
input multiple-output channel with inputs X1, . . . , XM and
outputs Y1, . . . Yn, see [4]. To make matters simple, we sup-
pose that A and B are fixed matrices, that the coefficients of
the matrix A all have unit magnitude, and that the rows of
the matrix A are orthogonal. For sufficiently large M , it
takes the following simple shape:

D(M,Ptot, L,K,N)

=
σ2

Sσ2
W

Mσ2
S + σ2

W

+
σ4

S

σ2
S + σ2

W /M

· 1

1 + KNσ2
S

Lσ2
W

log2

(
µ + Ptotβ2

0
KNσ2

Z

N

√∏N
n=1 β2

n

)
(13)

where µ is given by (11). In the next paragraph, we con-
sider a simple joint source-channel coding technique. A dis-
cussion and comparison of the two approaches following in
Subsection 3.3.
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3.2. Joint Source-Channel Coding Techniques

In [2], we consider a simple joint source-channel coding
strategy, whose essence is for each sensor to transmit a scaled
version of its observation. This simple analysis extends di-
rectly to the scenario of Figure 2 whenever the matrices A
and B are “matched” in an appropriate fashion. The sim-
plest notion of matched matrices in this context is to require
N = L and

BA = diag(λ1, . . . , λL), (14)

where diag(x1, . . . , xL) denotes a diagonal L × L matrix
with diagonal entries x1, . . . , xM . More general notions
will be presented in [3].

For matched matrices, the scaling law (10) is indeed
achievable. Under the same hypothesis on the entries of the
matrices A and B as in Section 3.1, Equation (10) becomes

Dlower(M,Ptot, L = N,K = 1)

=
σ2

Sσ2
W

Mσ2
S + σ2

W

+
σ4

S

σ2
S + σ2

W /M

· 1

µ + Ptot

Nσ2
Z

N

√∏N
n=1 β2

n

. (15)

This result is easily extended to the more general case L =
KN .

3.3. Comparison

Comparing (13) with (15), there is a key difference in the
respective second terms. To interpret its significance, con-
sider the following short argument. In any case, the best
decay of the distortion as a function of the number of nodes
is

D(M) ∼ 1
M

. (16)

Hence, the key question becomes that of how much resources
must be allocated to actually harvest this optimal distortion
scaling behavior. This is tantamount to requiring the second
terms in (13) and (15) to also decay like 1/M .

To gain insight into this issue, let us suppose for now
that L,K, and N are all fixed, and that M becomes very
large. For (13), this then amounts to requiring that

Ptot,sep ∼ eM , (17)

i.e, that the total power Ptot,sep increase exponentially in M
- this is the only way to make the second term in (13) decay
like 1/M . By contrast, for joint source and channel coding
under the assumptions of Subsection 3.2, a total power that
satisfies

Ptot,joint ∼ M, (18)

i.e.,that increases linearly as a function of the number of
nodes is sufficient. Moreover, in many cases of interest,
the values β2

n increase linearly in M . For those cases, a
constant total power is already sufficient.

4. CONCLUSIONS AND EXTENSIONS

In this paper, our focus is on identifying the scaling-law rel-
evant characteristics of coding schemes for sensor networks
of the type illustrated in Figure 1. We have shown by way of
an example that in general, strategies in which each sensor
tries to get his own bits to the data collector without making
errors are doomed to achieve an exponentially suboptimal
scaling behavior. Instead, strategies must be designed tak-
ing into account the source and channel structures. For our
example, we have seen that source and channel structures
are already matched, and (almost) uncoded transmission by
the sensors achieves a scaling-law optimal performance. In
more general cases, the sensors must attempt to match the
source structure to the channel structure. Approaches on
how this could be done are along the lines of [8]. This will
be presented in [3].
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