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ABSTRACT

In this paper, we consider the scenario where many sensors
co-operate to estimate a process. Only one sensor can take
a measurement at any time step. We wish to come up with
optimal sensor scheduling algorithms. The problem is moti-
vated by the use of sonar range-finders used by the vehicles
on the Caltech Multi-Vehicle Wireless Testbed. We see that
this problem involves searching a tree in general and pro-
pose and analyze two strategies for pruning the tree to keep
the computation limited. The first is a sliding window strat-
egy motivated by the Viterbi algorithm, and the second one
uses thresholding. We also study a technique that employs
choosing the sensors randomly from a probability distribu-
tion which can then be optimized. The performance of the
algorithms are illustrated with the help of numerical exam-
ples.

1. INTRODUCTION AND MOTIVATION

Sensor networks can significantly improve the estimates of
a process (see, e.g., [1] and the references therein). The
estimate obtained by fusing measurements from many sen-
sors can be even better than the sensor with the least mea-
surement noise (were no information exchange happening).
Thus, many systems have been built utilizing such networks
(as an example, see [2]). The assumption usually made in
the analysis of such systems is that all the sensors take mea-
surements at the same time. Thus the main issue is multi-
sensor data fusion (see, e.g., [3]). Sensor management is-
sues, if any, arise out of concerns like efficient networking
and communication protocols [4].

However, in some applications, the use of one sensor
places restrictions on the use of other sensors, e.g., simul-
taneous use of sensors may cause interference in measure-
ments. We face this situation in our own work related to
the Caltech Multi-Vehicle Wireless Testbed (MVWT) [5].
When the individual vehicles are using sonar range-finding
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devices, only one sensor can be active at any time. In such
cases the main issue is that of optimally scheduling the sen-
sor measurements so as to minimize the state estimate error
covariance. In this paper, we study this problem of coming
up with the optimal sensor schedule when only one sensor
is allowed to take the measurement at every time step. Some
sensor schedule optimization techniques exist in the litera-
ture, e.g., [6] examines the problem using stochastic control
theory techniques. We pursue two simpler methods, sliding
window and thresholding. These methods trade computa-
tion/memory requirements for suboptimality; however, they
seem to work well on the simulation examples. In addition,
we also study a method that involves choosing the sensors
randomly according to some optimal probability distribu-
tion.

The paper is organized as follows. In the next section,
we set up the problem. Then we consider the question of
choosing the optimal sensor schedule and present the algo-
rithms mentioned above. We demonstrate these algorithms
with the help of examples and end with conclusions and
some directions for future work.

2. MODELING AND PROBLEM FORMULATION

Consider the system evolving as follows.

x[k + 1] = Ax[k] + Bw[k]. (1)

x[k] ∈ Rn is the process state at time step k while w[k] is
the process noise, assumed white, Gaussian and zero mean
with covariance matrix Q. The process state is being ob-
served by N sensors with the i-th measurement being

yi[k] = Cix[k] + vi[k]. (2)

The measurement noises vi[k]’s for the sensors are assumed
independent of each other and of the process noise. Further
the noise vi[k] is assumed to be white, Gaussian and zero
mean with covariance matrix Ri. It is assumed that only one
sensor can be used at any time. However the measurements
are communicated to all the sensors in an error-free manner.
It is fairly obvious that since all the nodes have access to

III - 8250-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



the same measurements, all the state estimates are the same.
Moreover, given a particular sensor schedule, the optimal
estimate is obtained by a Kalman filter assuming a time-
varying sensor. If we denote the estimate at time step k
given measurements till time steps k-1 by x̂[k], we can write

x̂[k + 1] = Ax̂[k] + Kk(yj [k] − Cj x̂[k])

K[k] = AP [k]CT
j (CjP [k]CT

j + Rj)−1

P [k + 1] = (A − K[k]Cj)P [k](A − K[k]Cj)T

+ BQBT + K[k]RjK[k]T ,

where we have assumed that the j-th sensor takes the mea-
surement at time step k. Assuming the initial state x[0] has
mean zero and covariance Π0, the initial condition for above
recursions is given by P [0] = Π0 and x̂[0] = 0.

It is obvious that the minimum error covariance P [k]
achievable is a function of the sensor schedule. Thus, a
more general problem is that of finding the optimal switch-
ing sequence. For simplicity and without loss of generality,
we consider only two sensors and define the cost function
to be the sum of the traces of the error covariance matrices
for the two sensors over the running time of the system.

3. OPTIMIZATION ALGORITHMS

We can represent all the possible sensor schedule choices
by a tree structure. The depth of any node in the tree repre-
sents time instants with the root at time zero. The branches
correspond to choosing a particular sensor to be active at
that time instant. Thus, the path from the root to any node
at depth d represents a particular sensor schedule choice for
time steps 0 to d. We can associate with each node the cost
function evaluated using the sensor schedule corresponding
to the path from the root to that node. Obviously, finding
the optimal sequence requires traversing all the paths from
the root to the leaves. This procedure might place too high
a demand on the computational and memory resources of
the system. Moreover, in practical applications N might
not be fixed a-priori. Hence we need some sort of on-line
optimization procedure. We present some approximations
which address these difficulties. The first two approxima-
tions aim at pruning the tree so as to keep it to a manage-
able size while trying not to lose the optimal sequence. The
third algorithm aims at doing away with traversing the tree
altogether although it tries to minimize only the expected
steady state error covariance. We now consider these three
schemes.

Algorithm 1: Sliding Window: This algorithm is simi-
lar to a pseudo real time version of the Viterbi algorithm.
We define a window size d where d < N . The algorithm
proceeds as follows:

1. Start from root node with time k = 0.

2. (a) Traverse all the possible paths in the tree for the
next d levels from the present node.

(b) Identify the sensor sequence Sk,Sk+1,Sk+2,. . . ,
Sk+d−1 that yields the minimum cost at the end
of this window of size d.

(c) Choose the first sensor Sk from the sequence.

3. (a) If k = N then quit, else go to the next step.

(b) Designate the sensor Sk as the root.

(c) Update time k = k + 1.

(d) Repeat the traversal step 2.

The window size d is an arbitrary parameter. If it is large
enough, the sequence yielding the lowest cost will resemble
the optimal sequence for the entire time horizon. Also note
that when we slide the window, we already have the error
covariances for the first d − 1 time steps stored; hence they
do not need to be recalculated.

Algorithm 2: Thresholding: This algorithm is similar
to that presented in [7], in the context of choosing the op-
timal controller from a set of many possible choices. We
define a cut-off factor f ≥ 1. The algorithm proceeds as
follows:

1. Start from root node with cost 0.

2. (a) Traverse the tree by one step through all possi-
ble paths from the current node.

(b) Calculate the minimum cost till that time step.

(c) Prune away any branch that yields cost greater
than f times the minimum.

(d) For the remaining branches, denote the cost of
the nodes as the cost achieved by moving down
the tree till the node.

3. Consider each node in the next time step as the root
node and repeat the pruning step 2.

4. After N time steps or a sufficiently large time inter-
val, declare the optimal sequence to be the one yield-
ing the minimum cost till that time step.

The intuition behind the method is that any sequence which
yields too high a cost at any intermediate time step would
probably not be the one that yields the minimum cost over-
all. By playing with the factor f , we obtain a trade-off be-
tween the certainty that we would not prune away the opti-
mal sequence and the number of branches of the error co-
variance tree that need to be traversed.

Algorithm 3: Randomly Chosen Sensors: In this algo-
rithm, at each step, the sensors are chosen randomly accord-
ing to some probability distribution, such that the i-th sensor
is chosen with probability qi. The probability distribution
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is then chosen so as to minimize the expected steady state
error covariance. Note that we can not calculate the exact
value of the error covariance since that will depend on the
specific sensor schedule chosen. Hence we optimize the ex-
pected steady-state value of the error covariance. Thus we
are interested in

E [P [k + 1]] = E
[
BQBT + AP [k]AT

] − ∆,

where ∆ equals

E
[
AP [k]C[k]T (R[k] + C[k]P [k]C[k]T )−1C[k]P [k]AT

]
.

The quantity R[k] is the sensor noise that depends on the
particular sensor chosen at time step k. Explicitly evaluat-
ing this expectation appears to be intractable. We can how-
ever obtain an upper bound as follows [8]. First note that
the quantities P [k] and C[k] are independent. Moreover,
since P is positive semi-definite and R is positive definite,
APCT (R + CPCT )−1CPAT is convex in P and we can
apply Jensen’s inequality. Using these facts yields the upper
bound

E [P [k + 1]] ≤ BQBT + AE [P [k]]AT −
∑

qi∆i, (3)

where ∆i equals

A
[
E[P [k]]CT

i (Ri + CiE[P [k]]CT
i )−1CiE[P [k]]

]
AT .

Following [9], we can prove that as long as A is stable, the
modified Riccati recursion in equation (3) converges and
the expected value of error covariance is the unique posi-
tive semi-definite solution of the correspoding modified al-
gebraic Riccati equation. Note that A being stable is the
usual case in practical applications of estimation.

The algorithm thus consists of choosing qi’s so as to op-
timize the upper bound as a means of optimizing the ex-
pected steady state value of Pk itself. The optimization
problem is solved under the constraint that all qi’s should
be non-negative and should sum up to 1. The problem can
be solved by the gradient search algorithm or even by brute
force search for small N .

4. SIMULATION RESULTS

In this section, we walk through an example demonstrating
the use of algorithms developed above. We assume three
sensing vehicles trying to locate a non-cooperating target.
We model the target vehicle with the standard constant ac-
celeration model [10] in two dimensions. Thus with a dis-
cretization step size of h, the dynamics of the vehicle can be
modeled as in equation (1) with

A =

⎡
⎢⎢⎣

1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

h2/2 0
0 h2/2
h 0
0 h

⎤
⎥⎥⎦ .

The sensor model is the usual sonar model [11]. If the sen-
sor is oriented at an angle θ to the global x-axis the vehicle’s
measurement in the global frame is given by

y(k) =
[

1 0 0 0
0 1 0 0

]
x(k) +

[
cos θ − sin θ
sin θ cos θ

]
v(k).

The sensor noise has two components, range noise and the
bearing noise. The range noise increases with the distance
of the sensor from the target and the bearing noise variance
can usually be modeled as a fixed multiple of the range noise
variance for a given sensor. For simplicity, the two noises
can be assumed independent.

In the numerical example, we consider h = 0.2. and the
noise covariance matrices equal to

Q =
[

1 0.25
0.25 1

]
R1 =

[
3.24 0
0 0.04

]

R2 =
[

2.25 0
0 0.36

]
R3 =

[
2.56 0
0 0.16

]
.

The first sensor is placed at position corresponding to θ =
0◦, the second sensor at θ = 90◦ and the third at θ = 45◦.
We compare the algorithm performances over a time hori-
zon of 15 steps. The cost function is simply the sum of the
trace of the error covariance matrices of the three sensors
from time k = 0 to time k = 15.

Note that the simple strategy of always choosing any
one sensor is not optimal. In fact we can easily verify that
even a random sensor switching strategy usually reduces
the cost. Calculating an optimal sequence by the use of
algorithms discussed earlier can lead to significant impro-
ments. Figure 1 shows the improvement in the cost due
to the predicted (sub)-optimal sensor sequence over using
only the sensor 1 as a function of varying window sizes.
The improvements over the strategy of using only sensor 2
or sensor 3 are even bigger. It can be seen from the fig-
ure that even a window size of k = 1 leads to more than
20% improvement in the cost by predicting a good sensor
switching strategy. Figure 2 shows the improvement in cost
due to the optimal sensor sequence predicted by the thresh-
olding protocol as the cut-off factor f is varied. Again, a
large improvement can be obtained by using a fairly small
thresholding factor. The optimal probability distribution for
the random choice algorithm by optimizing the upper bound
in equation (3) is q1 = 0.45 and q2 = 0.23. If we find the
optimal sequence by the thresholding algorithm, it turns out
that in the steady state, the percentage of sensor 1 and sen-
sor 2 in the sequence is each about 40%. For the probability
distribution q1 = 0.45 and q2 = 0.23, the steady state value
of the upper bound of the sum of traces of the expected er-
ror covariance matrices for the three sensors turns out to be
2.51, which compares well with the value of about 2.2 ob-
tained by the optimal strategy found from the thresholding
algorithm.
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Fig. 1. Percent improvement in cost due to the optimal sen-
sor switching strategy as predicted by the sliding window
scheme.

5. CONCLUSIONS AND FUTURE WORK

In this paper, motivated by the use of sonar range-finders
on the vehicles on the Caltech MVWT, we investigated the
problem of determining an optimal sensor switching strat-
egy when only one sensor is allowed to take a measurement
per time step. We saw that this problem involves searching
a tree in general and proposed two strategies for pruning the
tree to keep the computation limited. We also considered an
algorithm which simply chooses sensors at random accord-
ing to an optimal probability distribution. Some examples
demonstrating these algorithms were presented.

The work can potentially be extended in many ways.
Obviously there exist better strategies for the case when
communication noise is present, although they might entail
more amount of data transmitted. Another avenue that can
be investigated is the effect of data loss due to fading in the
wireless channel.
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