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ABSTRACT

Demand for high data rate leads to frequency-selective propagation
effects, whereas carrier frequency-offsets and Doppler effects induced
by mobility introduce time-selectivity in wireless links. These fad-
ing channels, once acquired, offer joint multipath-Doppler diversity
gains. In addition, space-time multiplexing and/or coding offer at-
tractive means of combating fading, and boosting capacity of multi-
antenna communications. As the number of antennas increases, chan-
nel estimation becomes challenging because the number of unknowns
increases, and the power is split at the transmitter. Optimal training
sequences have so far been designed for flat-fading and frequency-
selective multi-antenna systems. In this paper, we design a low com-
plexity optimal training scheme for block transmissions over time-
and frequency (a.k.a. doubly)-selective channels with multiple an-
tennas. The optimality in designing our training schemes consists of
maximizing a lower bound on the ergodic (average) capacity that is
shown to be equivalent to minimizing the mean-square error of the
linear channel estimator. Simulation results confirm our theoretical
analysis which applies to both single- and multi-carrier transmissions.

1. INTRODUCTION

Demand for high data rate leads to time- and frequency-selective fad-
ing in mobile wireless channels. These fading channels, once ac-
quired, offer joint multipath-Doppler diversity gains. Therefore, the
quality of channel acquisition plays an important role on the overall
system performance.

For the channel state information (CSI) acquisition at the receiver,
two classes of methods are applicable: one is the class of so called
blind methods, the other relies on training symbols known to the re-
ceiver. Relative to blind methods, training based schemes are more
bandwidth consuming, but typically require shorter data records, and
entail lower receiver complexity by decoupling symbol detection from
channel estimation.

Training symbols can be either distributed throughout each burst,
or, gathered as a preamble. In time-selective fading channels, the
former is well motivated. Originally developed for time-selective
channels [2], pilot symbol assisted modulation has been extended to
MIMO flat and frequency-selective fading channels [6, 8], and single-
antenna time- and/or frequency-selective channels [9, 7]. Clearly,
optimal training needs to be designed for general MIMO time- and
frequency-selective fading channels, which are frequently encoun-
tered in wireless communications with high rate and high mobility.

In this paper, we design optimal training parameters for MIMO
time- and frequency-selective fading channels. Our training parame-
ters are optimal in the sense of maximizing a capacity lower bound,
and minimizing the channel estimation mean-square error (MSE). Since
our MIMO doubly-selective channel subsumes many other channel
types, the resultant optimal training scheme is the most general among
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existing ones, and can also be adapted to single-antenna, time- and/or
frequency-selective fading channels.

2. SYSTEM MODEL

In this section, we first present the multi-antenna frequency- and time-
selective channel model, and then propose a block transmission sys-
tem model.
2.1. MIMO Doubly-Selective Channel Model
Our multi-antenna system contains Nt transmit antennas and Nr re-
ceive antennas. For the µth transmit antenna, symbols each of du-
ration Ts are transmitted in N × 1 blocks uµ(k), with k denoting
the block index. The symbol sequence that is transmitted from the
µth transmit antenna can thus be expressed as uµ(kN + n), ∀n ∈
[0, N − 1].

Let h(ν,µ)(t; τ) denote the time-varying impulse response of the
channel including transmit-receive filters as well as the doubly-selective
propagation effects between the µth transmit antenna and the νth re-
ceive antenna. Notice that h(ν,µ)(t; τ) is two-dimensional: its depen-
dence on t captures the time-variation of the channel; while its depen-
dence on τ captures the frequency-selectivity of the channel. With
H(ν,µ)(f ; τ) denoting the Fourier transform of h(ν,µ)(t; τ) with re-
spect to t, we observe that H(ν,µ)(f ; τ) ≈ 0, for |f | > fmax or
∀τ > τmax, where τmax and fmax are the channel’s delay spread
and Doppler spread, respectively. Sampling H(ν,µ)(f ; τ) with period
1/(NTs) in f and Ts in τ , we obtain (Q + 1)(L + 1) samples with
L := �τmax/Ts� and Q := 2�fmaxNTs�.

From the channel estimation viewpoint, we treat the channel dur-
ing each block duration of NTs as deterministic, or, as a realization of
a random process. Consequently, the (Q + 1)(L + 1) time-frequency
samples corresponding to each (µ, ν) pair stay invariant within each
block duration. Using these samples, the discrete-time equivalent
channel h(ν,µ)(kN + n; l), ∀n ∈ [0, N − 1], l ∈ [0, L], can be
expressed according to the Basis Expansion Model (BEM) as [7]:

h(ν,µ)(kN + n; l) =

Q∑
q=0

h(ν,µ)
q (k; l)ejωqn, (1)

where ωq := 2π
N

(q − Q
2
). As in [5, 7], we assume the following:

A1) Parameters τmax, fmax (and thus L, Q) are bounded, known,
and satisfy 2τmaxfmax < 1.
2.2. Block Transmission System Model
With the discrete-time equivalent channel model, the received se-
quence at the νth receive antenna can be expressed as xν(kN +n) =∑Nt

µ=1

∑L
l=0 h(ν,µ)(kN +n; l)uµ(kN +n−l)+ην(kN +n), where

ην(kN+n) is the additive complex Gaussian noise at the νth receive-
antenna, with zero-mean and variance σ2. Casting the received se-
quence into blocks of size N > L, the matrix-vector input-output
relationship is given by:

xν(k)=

Nt∑
µ=1

[
H (ν,µ)(k)uµ(k)+H

(ν,µ)
ibi (k)uµ(k−1)

]
+ην(k),
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Fig. 1. Left: Structure of the channel matrix in (2); Right: Structure
of the channel matrix in (4).
where H (ν,µ)(k) and H

(ν,µ)
ibi (k) are N×N lower and upper triangu-

lar matrices with entries
[
H (ν,µ)(k)

]
n,m

= h(ν,µ)(kN + n; n−m)

and
[
H

(ν,µ)
ibi (k)

]
n,m

= h(ν,µ)(kN + n; N + n − m), ∀n, m ∈
[0, N−1]. The frequency-selective channel induced inter-block inter-
ference (IBI) term is captured in the second summand of the summa-
tion. Although the channel matrices H (ν,µ)(k) and H

(ν,µ)
ibi (k) both

bear a banded structure, they are not Toeplitz, due to the channel’s
time-variation.

Since the non-zero entries of H
(ν,µ)
ibi (k) are confined to its last

L columns, the IBI term vanishes if each block uµ(k) contains L
trailing zeros. A block transmission system model free of IBI can
then be reached:

xν =

Nt∑
µ=1

H (ν,µ)uµ + ην , (2)

where the block index k is omitted for notational simplicity, and the
following condition is used:
C1) Each block uµ contains L trailing zeros.

In the next section, we will further specify the structure of trans-
mitted blocks uµ, the channel estimation scheme, and the correspond-
ing mean-square error (MSE).

3. CHANNEL ESTIMATION AND MSE

To decouple channel estimation from symbol detection, each trans-
mitted block uµ consists of segments of information and training
symbols, with the general structure

uµ = [cT
µ,1, b

T
µ,1, . . . , c

T
µ,Pµ

, bT
µ,Pµ

]T , (3)

where cµ,p and bµ,p of lengths N
(µ)
c,p and N

(µ)
b,p , ∀p ∈ [1, Pµ], denote

information and training symbol sub-blocks, respectively. In general,
these lengths satisfy

Pµ∑
p=1

N (µ)
c,p = Nc,

Pµ∑
p=1

N
(µ)
b,p = Nb, and Nc + Nb = N,

to yield information symbol rate common across all transmit anten-
nas. Moreover, since Condition C1) requires the last L entries of
bµ,Pµ to be zeros, we need N

(µ)
b,Pµ

> L, ∀µ.
Gathering information and training symbols per block uµ to form

cµ and bµ, respectively, we wish to estimate the time- and frequency-
selective MIMO channel from the received samples corresponding to

{bµ}Nt
µ=1. Using the estimates Ĥ

(ν,µ)
, ∀ν, µ, we can then recover the

unknown information symbols cµ.
Let us now take the noise-free received block corresponding to

the (ν, µ) antenna pair x(ν,µ) := H (ν,µ)uµ. From the structure of
uµ and H (ν,µ) (see Fig. 1), we deduce that some segments of x(ν,µ)

are free of unknown information symbols transmitted from the µth

antenna and can be potentially used for channel estimation. However,
since the received symbol block xν is the superposition of x(ν,µ)’s
over µ, it is possible that x

(ν,µ)
b,p is contaminated by unknown infor-

mation symbols from other transmit antennas, and thus rendered un-
usable for channel estimation. To ensure the separation of information
and training symbols and gain maximum usage of training pilots, the
following condition has to be satisfied:
C2) The training symbols should be located such that Pµ = P ,
N

(µ)
c,p = Nc,p and N

(µ)
b,p = Nb,p, for all µ ∈ [1, Nt].

To establish our channel estimator, let us first re-arrange entries of
uµ such that all training symbols are gathered together. Permutating
xν accordingly, we have at the νth antenna:[

xν,c

xν,b

]
=

Nt∑
µ=1

[
H

(ν,µ)
c H

(ν,µ)
bc

0 H
(ν,µ)
b

]
·
[
cµ

bµ

]
+

[
ην,c

ην,b

]
, (4)

where the channel matrix is re-structured as illustrated in Fig. 1. No-
tice that the received sub-block xν,b only relies on known training
symbols, and can thus be used to establish our channel estimate. From
Fig. 1, it is evident that H

(ν,µ)
b consists of P sub-matrices H

(ν,µ)
b,p ,

each corresponding to a training sub-block bµ,p. It can be shown that
H

(ν,µ)
b,p has size (Nb,p −L)×Nb,p. Therefore, for each training sub-

block to contain sufficient training symbols for channel estimation,
the following condition is needed:
C3) The length of each training sub-block bµ,p is at least L + 1; i.e.,
Nb,p > L, ∀ p.

Condition C3) shows that the pilot symbols should be inserted in
sub-blocks of size at least L + 1.

Applying (1) to each H
(ν,µ)
b,p , ∀p, the training input-output rela-

tionship becomes [c.f. (4)]:

xν,b =

Nt∑
µ=1

Q∑
q=0

⎡
⎢⎢⎣

Db,1,qH
(ν,µ)
b,1,q bµ,1

...
Db,Pµ,qH

(ν,µ)
b,P,qbµ,P

⎤
⎥⎥⎦ + ην,b, (5)

where Db,p,q and H
(ν,µ)
b,p,q are corresponding sub-matrices of Dq =

diag{1, exp(jωq), . . . , exp(jωq(N − 1))}, and the lower triangular
Toeplitz matrix H

(ν,µ)
q with first column [h

(ν,µ)
q (0), . . . , h

(ν,µ)
q (L),

0, . . . , 0]T , respectively. Using the commutation property of convo-
lution, we have H

(ν,µ)
b,p,q bµ,p = Bµ,ph

(ν,µ)
q , with the (Nb,p − L) ×

(L + 1) Toeplitz matrix:

Bµ,p :=

⎡
⎢⎣

bµ,p(L) . . . bµ,p(0)
...

. . .
...

bµ,p(Nb,p − 1) . . . bµ,p(Nb,p − 1 − L)

⎤
⎥⎦ (6)

with bµ,p(n) being the (n + 1)st entry of sub-block bµ,p, and h
(ν,µ)
q

containing {h(ν,µ)
q (l)}L

l=0. Concatenate {h(ν,µ)
q }Q

q=1 into a (Q +

1)(L + 1) × 1 vector h(ν,µ), and define matrices

Ξµ :=

⎡
⎢⎣

Db,1,0Bµ,1 . . . Db,1,QBµ,1

...
. . .

...
Db,P,0Bµ,P . . . Db,P,QBµ,P

⎤
⎥⎦ .

We can then re-express (5) as:

xν,b =

Nt∑
µ=1

Ξµh(ν,µ) + ην,b = Ξhν + ην,b (7)

with obvious substitutions. Notice that the matrix Ξ is common for
all ν ∈ [1, Nr]. Collecting xν,b and hν for all ν, we have:

xb = (INr ⊗ Ξ)h + ηb. (8)
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Similar to [6, 7], we will rely on the Wiener solution of (7) that
yields the linear MMSE (LMMSE) channel estimator:

ĥ =
(
σ2R−1

h + (INr ⊗ ΞHΞ)
)−1

(INr ⊗ ΞH)xb, (9)

where Rh := E[hhH] is the channel correlation matrix. To facilitate
the ensuing analysis, we further assume that:
A2) The channel coefficients are independent Gaussian distributed,
and the channel covariance matrices Rhν := E[hνhH

ν ] are the same
across ν ∈ [1, Nr]; i.e., Rh = INr ⊗ Rh1 with trace NtNr .

As a result, the covariance matrix of the channel estimation error
h̆ := h − ĥ, is given by:

Rh̆ := E[h̆h̆
H

] = INr ⊗
(

R−1
h1

+
1

σ2
ΞHΞ

)−1

. (10)

Consequently, the MSE of ĥ is given by:

σ2
h̆ := E[‖h̆‖2] = Nr · tr

[(
R−1

h1
+

1

σ2
ΞHΞ

)−1
]

, (11)

and is lower bounded by:

σ2
h̆ ≥ Nr

∑
m

1

[R−1
h1

+ 1
σ2 ΞHΞ]m,m

, (12)

where the equality holds if and only if ΞHΞ is diagonal. Evidently,
the design of training symbols across all transmit antennas affects the
MMSE through Ξ, and the following condition is required for our
training strategy to attain the MMSE:
C4) For fixed Nb and Nc, the training symbols should be inserted so
that the matrix ΞHΞ is diagonal.
Condition C4) coincides with that in [1, 3, 8, 10].

So far, we have established our channel estimator in (9), and the
conditions C1)-C4) for optimal training parameter design. But some
training parameters remain to be decided, such as the placement and
the optimal number of training symbols. These parameters affect the
performance of the channel estimator, the effective transmission rate
R := Nc/N , the mutual information, as well as the bit error rate
(BER). In the following, we will select these training parameters by
optimizing an average capacity bound. Similar to the single-antenna
case in [7], we will show that the optimization of the average capacity
bound is equivalent to the minimization of the channel MMSE.

4. CAPACITY BOUNDS

Due to the difficulty associated with the evaluation of the average ca-
pacity itself, we choose its lower bound as the optimality criterion.
The optimal training parameters are those which maximize this lower
capacity bound, while the upper capacity bound is viewed as a bench-
mark for the maximum achievable rate.

Collecting the Nr received symbol blocks each corresponding to
a receive antenna, the input-output relationship (4) becomes:[

xc

xb

]
= H ·

[
c
b

]
+

[
ηc

ηb

]
=

[
Hc Hbc

0 Hb

]
·
[
c
b

]
+

[
ηc

ηb

]
(13)

where

Ha :=

⎡
⎢⎢⎣

H
(1,1)
a . . . H

(1,Nt)
a

...
. . .

...
H

(Nr,1)
a . . . H

(Nr,Nt)
a

⎤
⎥⎥⎦ , a = b, c, or, bc;

and c, b and ηc, ηb are concatenated information symbols, training
pilots and noise vectors, respectively.

Let P denote the total transmit-power per block, Pc the power
allocated to the information signal part, and Pb the power assigned
to the training part. With b conveying no information, the mutual
information between transmitted information symbols, and received
symbols in (13) is given by I(xc; c|Ĥ), where Ĥ is an estimate of
H . The channel capacity averaged over the random channel H is
defined as:

C := max
Pc(·), Pc

1

N
E

[
I(xc; c|Ĥ)

]
(14)

for any fixed power Pc := E[‖c‖2], where Pc(·) denotes the proba-
bility density function of c.

An upper bound of the capacity can be obtained when the channel
estimate is perfect, i.e., Ĥ ≡ H , and when c is Gaussian distributed
with Rc := E[ccH]:

C̄ := max
Pc(·), Pc

1

N
E

[
log det

(
INr(Nc+LP ) +

1

σ2
w

HcRcH
H
c

)]
.

Since c is the ST encoded information symbol block, it is approx-
imately Gaussian for many ST mappers provided that the original in-
formation symbols are Gaussian. For simplicity, we hereafter assume
that:
A3) The information bearing symbol block c is zero-mean Gaussian
with covariance Rc = P̄cINtNc , and P̄c := Pc/(NtNc).

When the estimate of H is not perfect, we have [c.f. (13)]: xc −
Ĥbcb = Ĥcc + v, where v := H̆cc + H̆bcb + ηc with H̆c :=

Hc − Ĥc and H̆bc := Hbc − Ĥbc. The correlation matrix of v is
then given by

Rv = P̄cE[H̆cH̆
H
c ]+E[H̆bcbbHH̆

H
bc]+σ2INr(Nc+LP ). (15)

With v being uncorrelated with c, it follows from [6, Lemma2] that
the worst case noise is Gaussian with zero mean and Rv . This implies
that the lower bound of capacity is:

C :=
1

N
E

[
log det

(
INr(Nc+LP ) + P̄cR

−1
v ĤcĤ

H
c

)]
. (16)

Maximizing C entails minimizing Rv in the positive semi-definite
sense [7]. Specifically, we establish the following result
Lemma 1 Consider a fixed number of training symbols Nb adhering
to C1)-C3). Among all {bµ,p}Nt

µ=1 choices that satisfy C4) and lead

to identical {Rh̆ν
}Nr

ν=1, the design which satisfies that Nb,p ≥ 2L+1

and has the first L and last L entries of {bµ,p}Nt
µ=1, ∀p ∈ [1, P ] equal

to zero, achieves the minimum Rv .
Accordingly, we modify condition C3) as follows:

C3’) The training sub-block is given by: bµ,p := [0T
L b̄

T
µ,p 0T

L ]T ,
∀µ ∈ [1, Nt], p ∈ [1, P ], with b̄µ,p of length Nb,p − 2L ≥ 1.
Intuitively, the L zeros between the information and training sub-
blocks eliminate the inter-sub-block interference. It then follows that:
Rv = P̄cE[H̆cH̆

H
c ] + σ2INr(Nc+LP ). When Nc,p 
 2L, the

latter can be approximated as

Rv ≈
[ P̄c

Nr
σ2

h̆ + σ2

]
INr(Nc+LP ). (17)

Clearly, Rv is minimized when σ2
h̆

is minimized and the capacity
lower bound C in (16) is maximized accordingly.

5. OPTIMAL TRAINING PARAMETERS

Starting from the optimization criteria: capacity lower bound C, and
channel estimation MSE σ2

h̆
, we have shown that the maximization

of the former is equivalent to the minimization of the latter. Our ob-
jective then becomes selecting training parameters to maximize C.
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These parameters are: the placement of training symbols, the number
of training symbols, and the power allocation among information and
training symbols.

Regarding the placement of training symbols, we established the
following:
Proposition 1 Suppose A1)-A3) holds true. For fixed Pc and Pb,
the following placement is optimal: all information sub-blocks have
identical length Nc,p = Nc/P , ∀p; the pilot sub-blocks from the
µth transmit antenna have structure [0µ(L+1)−1, b,0(Nt−µ)(L+1)+L]
and lengths Nb,p = Nt(L + 1) + L, ∀p; all pilot symbols are equi-
powered with Pb/(NtP ).

It can be readily verified that the placement as in Proposition 1
satisfies conditions C1)-C4), and among all placement choices that
satisfying C1)-C4), this placement maximized C.

With the number of training symbols being fixed as (Nt(L+1)+
L) per sub-block, the optimal number of training symbols is uniquely
determined by the number of sub-blocks P . Differentiating C with
respect to P , we observe that C decreases monotonically as P in-
creases. Moreover, notice that there are Nt(Q+1)(L+1) unknowns
for each receive antenna, we also need Nb ≥ PL+Nt(Q+1)(L+1)
to guarantee the separation and channel estimation. The following re-
sult can then be established:
Proposition 2 Suppose A1)-A3) holds true. For fixed Pc and Pb,
the placement satisfying C1-C4, and with block length N being an
integer multiple of (Q + 1), then the optimal number of sub-blocks is
P = Q + 1.

From Propositions 1 and 2, the total number of training symbols
is (Nt(L + 1) + L)(Q + 1). But notice that this includes also the L
trailing zeros for IBI removal. The last parameter that remains to be
determined is the power allocation factor α := Pc/P ∈ (0, 1). To
this end, we have established:
Proposition 3 Suppose A1-A3 holds true. For placement satisfying
C1-C4 with Nc information and Nb training symbols per block, the
optimal power allocation factor is given by:

α =

√
Nc√

Nc +
√

Nt(Q + 1)(L + 1)
,

at high signal-to-noise ratio (SNR).
Summarizing, the optimal training parameters are as follows:

Parameters Optimal training
Number of sub-blocks P = Q + 1

Placement of info. symbols Nc,p = Nc/P, ∀ p ∈ [1, P ]
Number of training symbols Nt(L + 1) + L per sub-block

Structure of training sub-blocks [0µ(L+1)−1, b,0(Nt−µ)(L+1)+L]

Power allocation α =
√

Nc√
Nc+

√
Nt(Q+1)(L+1)

6. NUMERICAL EXAMPLES

In this section, we present simulations to test our designs. Adopting
our training parameters summarized in the table, we depict the aver-
age capacity bounds versus SNR in Figure 2. The SNR is defined as
the average received symbol power to noise ratio at each receive an-
tenna. We select L = 3 for each channel, the transmitted block length
N = 126, the carrier frequency 2GHz, mobile velocity 160Km/hr,
and sampling period 26µs which result in Q = 2 bases per chan-
nel. We simulate the channel taps as independent and identically dis-
tributed across antennas, following an exponentially decaying power
delay profile in the time domain and the Jakes’ spectrum in frequency
domain. As expected, the capacity bounds increase monotonically
as SNR increases while the upper and lower bounds are tight. We
also note that the (Nt, Nr) = (1, 2) case has larger average capacity
than (Nt, Nr) = (2, 1) does, because we fix the transmission power.
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Fig. 2. Average capacity bounds with different number of antennas

However, the capacity bounds for these two cases are parallel in the
figure (have the same slope). When (Nt, Nr) = (2, 2), the capacity
bounds have sharper slopes. This result is consistent with Foschini’s
claim on coherent average capacity in [4].
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