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ABSTRACT

We present an interference and noise analysis for multipulse mul-
ticarrier (MPMC) transmission over time-varying fading channels.
Based on this analysis, we propose algorithms and guidelines for
system optimization (transmit and receive pulse shapes, time-fre-
quency lattice parameters, and power allocation). Numerical simu-
lations illustrate the optimization gain and the superiority of MPMC
systems over traditional (single-pulse) multicarrier systems for high-
ly dispersive channels.

1. INTRODUCTION

Multipulse multicarrier (MPMC) modulation is a recently intro-
duced wireless communication scheme that extends multicarrier
(MC) modulation by using multiple transmit and receive pulses
[1]. In [1], algorithms and examples for the design of MPMC
transmit and receive pulses have been presented. The resulting
pulses showed excellent time-frequency (TF) concentration which
suggests increased interference robustness when transmitting over
time-varying frequency-selective channels. MPMC modulation also
establishes a unifying framework for existing MC schemes like
simple single-pulse MC systems (cyclic-prefix OFDM, pulse-shap-
ing OFDM) [2,3], multicarrier DS-CDMA [4], OFDM with offset-
QAM [5], and MC systems with hexagonal or other non-rectangular
TF lattices [6]). The novel contributions of this paper are:
• a detailed noise and interference analysis for MPMC systems

transmitting over time-varying fading channels,
• the definition of meaningful performance measures for MPMC

systems,
• algorithms and guidelines for the optimization of the transmit and

receive pulse shapes, the power allocation, and the lattice param-
eters of MPMC systems,

• simulation results verifying the optimization gains and the advan-
tage of MPMC systems over single-pulse MC systems.

After discussing the MPMC system model in Section 2, we
present an interference analysis in Section 3. This involves a sim-
plified vector channel model and different performance measures
that are the basis for our system optimization in Section 4. Section
5 shows simulation results and Section 6 provides conclusions.

2. MPMC SYSTEMS

An MPMC modulator uses R linearly independent transmit pulses
g(r)(t), r = 1, . . . ,R, to transmit R symbols a(r)[l,k] at symbol time

Funding by FWF Grant P15156.

l and subcarrier k. With K subcarriers the transmit signal is [1]

s(t) =
∞

∑
l=−∞

K−1

∑
k=0

aT [l,k]gl,k(t). (1)

Here, a[l,k] =
[
a(1)[l,k] . . .a(R)[l,k]

]T , and gl,k(t)= g(t−lT )e j2πkFt

with g(t) =
[
g(1)(t) . . .g(R)(t)

]T . The symbol duration T and the
subcarrier spacing F are the MPMC TF lattice parameters.

The signal s(t) is transmitted over a time-varying Rayleigh fad-
ing channel H with impulse response h(t,τ). The channel satis-
fies the assumption of wide-sense stationary uncorrelated scatter-
ing (WSSUS) [7, 8]. The receive signal is given by1

r(t) = (Hs)(t)+n(t) =
∫

τ
h(t,τ)s(t− τ)dτ+n(t), (2)

where n(t) is additive white Gaussian noise (AWGN) of variance
σ2

n. The WSSUS channel H will be characterized by its scattering
function (delay-Doppler spectrum) CH(τ,ν) [7, 8] (τ and ν denote
time delay and Doppler frequency, respectively). Practical WS-
SUS channels are underspread [8], i.e., the channel spread factor
4τmaxνmax is much less than one (τmax and νmax are the channel’s
maximum delay and Doppler frequency, respectively).

At the receiver, the MPMC demodulator employs R receive
pulses γ(r)(t),r = 1, . . . ,R, to calculate the receive sequences x(r)[l,k]
from r(t) in (2) according to

x[l,k] =
∫

t
r(t)γγγ∗l,k(t)dt. (3)

Here, x[l,k] =
[
x(1)[l,k] . . .x(R)[l,k]

]T and γγγl,k(t) = γγγ(t− lT )e j2πkFt

with γγγ(t) =
[
γ(1)(t) . . .γ(R)(t)

]T .
It can be shown that for ideal channel (r(t) = s(t)), perfect

symbol recovery (x[l,k] = a[l,k]) in an MPMC system is obtained
if and only if g(t) and γγγ(t) are biorthogonal, i.e.,∫

t
g(t)γγγH

l,k(t)dt = δ[l]δ[k]I. (4)

If in addition g(t) = γγγ(t), we call the MPMC system orthogonal.
(Bi)orthogonal MPMC systems require that {gl,k(t)}, {γγγl,k(t)} are
multipulse Gabor Riesz bases (cf. [1]); this in turn presupposes
T F/R ≥ 1 (consistent with the single-pulse case). Efficient algo-
rithms that calculate a canonical biorthogonal pulse γγγ(t) and an or-
thogonalized pulse g⊥(t) from a prescribed pulse g(t) are described
in [1]. These algorithms are based on a Zak transform description
of MPMC systems. Zak transform formulations also exist for the
results and algorithms of the present paper but are not discussed
due to lack of space.

1Integrals are from −∞ to ∞.
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Figure 1: Equivalent vector channel for MPMC systems.

3. INTERFERENCE ANALYSIS

Equivalent Vector Channel. For the subsequent interference anal-
ysis, we assume the number of subcarriers K to be infinite. The
results obtained are upper bounds for the case of finite K which
are tight for the subcarriers close to the center frequency if K is
sufficiently large. By combining (1), (2), and (3), the input-output
relation for the overall MPMC system is obtained as

x[l,k] =
∞

∑
l′=−∞

∞

∑
k′=−∞

Hl,k;l′,k′ a[l′,k′]+ z[l,k] , (5)

with the R×R channel matrices

Hl,k;l′,k′ =
∫

t
γγγ∗l,k(t)

(
HgT

l′,k′
)
(t)dt,

and the noise vector z[l,k] =
∫

t γγγ∗l,k(t)n(t)dt. The terms in (5)
with (l′,k′) �= (l,k) correspond to intersymbol interference (ISI)
and intercarrier interference (ICI), and the off-diagonal elements
in Hl,k;l,k correspond to interpulse interference (IPI). For our anal-
ysis we define an equivalent vector channel (see Fig. 1)

x[l,k] = x̃[l,k]+ e[l,k], (6)

where e[l,k] subsumes all undesired interference and noise, and the
desired receive vector is (� denotes the Hadamard product)

x̃[l,k] � H̃l,k a[l,k] with H̃l,k �
[
Hl,k;l,k �D

]
. (7)

Here, the 0/1-valued matrix D is used to select those channel coeffi-
cients that correspond to IPI tolerated at the receiver. If the receiver
targets at simple scalar equalization and thus tolerates no IPI, then
D = I. Tolarating all IPI by using more sophisticated matrix equal-
izers corresponds to D = 1 with 1 the all-one matrix. Note that
according to (7) ISI, ICI, and noise are always undesired.

Statistical Analysis. We next calculate the statistics of the interfer-
ence/noise vector e[l,k]. We assume zero-mean, i.i.d. input symbol
vectors a[l,k] with correlation matrix Ca � E{a[l,k]a[l,k]H}. It
then follows from (6) and from the WSSUS and AWGN assump-
tions that e[l,k] is 2-D stationary with correlation

Ce � E
{

e[l,k]eH [l,k]
}

= Cx −Cx,x̃ −CH
x,x̃ +Cx̃ , (8)

with

Cx =
∫

τ

∫

ν

CH(τ,ν)A∗
γγγ,g(τ,ν)Ca AT

γγγ,g(τ,ν)dτdν+σ2
n

∫

t

γγγ∗(t)γγγT(t)dt,

Cx̃ =
∫

τ

∫

ν

CH(τ,ν)
[
A∗

γγγ,g(τ,ν)�D
]
Ca

[
A∗

γγγ,g(τ,ν)�D
]Hdτdν,

Cx,x̃ =
∫

τ

∫

ν

CH(τ,ν)A∗
γγγ,g(τ,ν)Ca

[
A∗

γγγ,g(τ,ν)�D
]Hdτdν.

Here, we used a periodized version of the scattering function,

CH(τ,ν) �
∞

∑
l=−∞

∞

∑
k=−∞

CH(τ− lT,ν− kF),

and the matrix cross ambiguity function

Aγγγ,g(τ,ν) �
∫

t
γγγ(t)gH(t − τ)e− j2πνtdt.

Performance Measures. We next present different global perfor-
mance measures that are based on the error-correlation Ce and en-
able us to perform MPMC system optimization.

The first and simplest performance measure is the average MSE

ε2 � 1
R

E
{‖e[l,k]‖2

2
}

=
1
R

R

∑
r=1

E{|e(r)[l,k]|2} =
1
R

tr{Ce}. (9)

This quantity is straightforward to calculate and useful for system
performance evaluations. However, it does not describe whether
a system is balanced in the sense that the diagonal values of Ce
are approximately equal. If an assessment of the individual MSE
components [Ce]r,r = E{|e(r)[l,k]|2} is desired, a more appropriate
performance measure is the worst-case MSE

ε2
max � max

r∈{1,...,R}
[Ce]r,r . (10)

In contrast to (9), this quantity penalizes unbalanced systems.
From a communication/information theory point of view more

meaningful performance measures are mutual information and spec-
tral efficiency. We assume for simplicity that the transmit symbol
vectors a[l,k] and the error vectors e[l,k] are independent and i.i.d.
Gaussian. Then, the mutual information of a[l,k] and x[l,k], as-
suming that H̃l,k is known at the receiver, is given by (see [9])

Il,k = log2 det
(
I+ H̃l,kCaH̃H

l,kC−1
e

)
.

The expectation of Il,k is known as the ergodic mutual information,
Ī � EH{Il,k}. It is independent of l, k since the channel is WSSUS.
The spectral efficency in (bit/s/Hz) is obtained by normalizing Ī
with T F:

ζ � 1
T F

Ī . (11)

The expectation involved in Ī and ζ is difficult to evaluate.
However, since log2 det(·) is convex, an upper bound is obtained
according to Jensen’s inequality [9],

ζ =
1

T F
EH{log2 det

(
I+ H̃l,kCaH̃H

l,kC−1
e

)}

≤ 1
T F

log2 det
(
I+EH{H̃l,kCaH̃H

l,k}C−1
e

)
= ζmax.

With (7), we obtain

EH

{
H̃l,kCaH̃H

l,k

}
= EH

{
Ea

{
H̃l,ka[l,k]aH [l,k]H̃H

l,k

}}

= E
{

x̃[l,k] x̃H [l,k]
}

= Cx̃.

Thus, the upper bound ζmax on the spectral efficiency equals

ζmax =
1

T F
log2 det

(
I+Cx̃ C−1

e
)
. (12)

In our simulations we observed that typically ζmax is close to ζ.
Although slightly more difficult to compute than the MSE measures
ε2 and ε2

max, ζmax has the advantage of being a more direct indicator
of the overall system performance.

4. SYSTEM OPTIMIZATION

Based on the performance measures of the previous section, we
next propose algorithms and guidelines for MPMC system opti-
mization for prescribed channels with scattering function CH(τ,ν)
and noise variance σ2

n. We propose a successive separate optimiza-
tion of transmit/receive pulses, symbol power allocation, and TF
lattice parameters since joint optimization is difficult.

Pulse Optimization. We first attempt to choose a receive pulse γγγ(t)
that is biorthogonal to a fixed, prescribed transmit pulse g(t) and
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that minimizes the average MSE ε2 = 1
R tr{Ce} (all system param-

eters other than γγγ(t) are considered fixed). This is possible since
for T F > R, the receive pulse γγγ(t) is not uniquely determined by
the biorthogonality condition (4). In particular, any biorthogonal
receive pulse vector can be written as

γγγ(t) = γγγ0(t) + Vu(t). (13)

Here, γγγ0(t) is the canonical biorthogonal pulse (cf. [1]), u(t) =
[u(1)(t) . . .u(Lu)(t)]T is a length-Lu vector2 such that span

{
u(i)(t)

}
=

S⊥ where S = span
{

g(r)
l,k (t)

}
, and V =

[
v(1) . . .v(R)]T is an arbi-

trary R×Lu coefficient matrix.
By virtue of (13), constrained minimization of ε2 (cf. (9)) with

respect to γγγ(t) is equivalent to unconstrained minimization with re-
spect to V. It can be shown that [Ce]r,r, r = 1, . . .R, is a quadratic
functional of v(r) and does not depend on v(r′), r′ �= r; tr{Ce} can
thus be minimized by separately minimizing [Ce]r,r with respect to
v(r). Assuming diagonal Ca, this amounts to solving the R linear

equations
(
Wx −W(r)

x̃

)
v(r) = y(r)

x −y(r)
x̃ . Here,

Wx =
∫

τ

∫

ν

CH(τ,ν)A∗
u,g(τ,ν)Ca AT

u,g(τ,ν)dτdν+σ2
n

∫

t

u∗(t)uT(t)dt,

W(r)
x̃ =

∫

τ

∫

ν

CH(τ,ν)A∗
u,g(τ,ν)D(r)Ca AT

u,g(τ,ν)dτdν,

y(r)
x =

∫

τ

∫

ν

CH(τ,ν)A∗
u,g(τ,ν)Ca AT

γ(r)
0 ,g

(τ,ν)dτdν+σ2
n

∫

t

u∗(t)γ(r)
0 (t)dt,

y(r)
x̃ =

∫

τ

∫

ν

CH(τ,ν)A∗
u,g(τ,ν)D(r)Ca AT

γ(r)
0 ,g

(τ,ν)dτdν.

with D(r) the R×R diagonal matrix with entries
[
D(r)]

i,i = [D]r,i.

This yields v(r)
opt =

(
Wx −W(r)

x̃

)−1(y(r)
x − y(r)

x̃

)
. Hence, the opti-

mum biorthogonal receive pulse is given by

γγγopt(t) = γγγ0(t)+Vopt u(t)

where Vopt =
[
v(1)

opt . . .v
(R)
opt

]T . This pulse design extends the meth-
ods for single-pulse systems in [2].

Power Allocation. We next consider maximization of ζmax by op-
timizing the power allocation Pr � E{a(r)[l,k]}. We assume uncor-
related transmit symbols a(r)[l,k] such that Ca = diag{P1, . . . ,PR}.
Furthermore, tr{Ca} = ∑R

r=1 Pr (which is proportional to the mean
transmit power) is assumed fixed. At first glance, it appears that
this optimization problem can be solved via a water-filling algo-
rithm (cf. [9]). However, this is not the case since the statistics of
e[l,k] depend on Ca (cf. (8)). Since we did not succeed in solving
the optimum power allocation problem analytically, we propose a
numerical optimization based on the MATLAB Optimization Tool-
box.

Lattice Parameters. We determine the lattice parameters T , F in-
directly by choosing the shape factor T

F and the redundancy T F
R .

While a numerical optimization of the shape factor T
F could be per-

formed, symmetry arguments suggest the choice (cf. [3, 6] for the
case R = 1)

T
F

=
τmax

νmax
, (14)

2While Lu in general is infinite, it is finite for practical discrete imple-
mentations.

−T 0 T
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0
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0

0

γ⊥(4)
opt (t)

γ⊥(3)
opt (t)

γ⊥(2)
opt (t)

γ⊥(1)
opt (t)g⊥(1)(t)

g⊥(2)(t)

g⊥(3)(t)

g⊥(4)(t)

g̃(1)(t)

g̃(2)(t)

g̃(3)(t)

g̃(4)(t)

(a) (b) (c)
t tt

Figure 2: MPMC pulses: (a) orthogonalized pulse g⊥(t), (b) op-
timum biorthogonal pulse γγγ⊥opt(t), (c) pulse g̃(t) obtained via joint
iterative optimization.

where τmax and νmax denote the channel’s maximum delay and
maximum Doppler frequency. The choice of the redundancy T F

R is
guided by the conflicting goals of large symbol rate (obtained with
small T F

R ) and weak interference (obtained with large T F
R , due to

reduced overlap of adjacent pulses). Since both of these criteria
are captured by the spectral efficiency bound ζmax in (12), we pro-
pose to numerically optimize T F

R (with all other system parameters
fixed) such that ζmax is maximized.

Joint Iterative Optimization. To combine the gains achieved by
the separate optimization of pulse shapes, power allocation, and
lattice parameters, the individual optimizations can be combined in
an iterative fashion. Within each iteration loop, pulse optimiza-
tion, optimum power allocation, and lattice optimization can be
performed successively. In our simulations, we achieved the best
results by starting with an orthogonalized pulse with fixed redun-
dancy, choosing the shape factor according to (14), and then per-
forming the following steps within each iteration loop: 1) calcu-
lation of optimum biorthogonal pulse, 2) orthogonalization of the
resulting pulse, and 3) numerical optimization of the power alloca-
tion. This procedure typically converged to a stable solution after a
few iterations.

5. SIMULATION RESULTS

Our simulations illustrate the optimization gains for MPMC sys-
tems with R = 4 and D = 1 (i.e. matrix equalization at the re-
ceiver). The initial transmit pulse g(t) consists of the first four Her-
mite functions. We assume a channel with a scattering function that
equals the indicator function of [−τmax,τmax]× [−νmax,νmax]. The
shape factor was chosen according to (14).

Experiment 1. We first consider a fixed redundancy T F/R = 1.15,
a channel with spread factor 4τmaxνmax = 0.01, and SNR = 30 dB.
In this situation, an absolute upper bound for ζmax (assuming only
noise and no interference) is 8.67 bit/s/Hz.

Let us first investigate pulse optimization for uniform power
allocation (Ca = I). From g(t), the canonical biorthogonal receive
pulse γγγ(t) and the orthogonalized transmit/receive pulse g⊥(t) (cf.
Fig. 2(a)) can be calculated according to [1], leading to a maxi-
mum spectral efficiency of ζmax = 7.35bit/s/Hz for {g(t),γγγ(t)} and
ζmax = 7.85bit/s/Hz for {g⊥(t),g⊥(t)}. Using the optimized re-
ceive pulses γγγopt(t) and γγγ⊥opt(t), that are biorthogonal to g(t) and
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transmit receive ζmax [bit/s/Hz]
pulse pulse Ca = I Ca,opt

g(t) γγγ(t) 7.35 7.91

g⊥(t) g⊥(t) 7.85 8.02

g(t) γγγopt(t) 7.95 8.10

g⊥(t) γγγ⊥opt(t) 8.11 8.16

g̃(t) g̃(t) - 8.30

Table 1: Spectral efficiencies of various MPMC systems.

g⊥(t) respectively, the spectral efficiency can be improved to ζmax =
7.95bit/s/Hz and ζmax = 8.11bit/s/Hz (cf. Fig. 2(b) and Table 1).

We next improve the foregoing MPMC systems by using the
optimized power allocation Ca,opt (while leaving all other system
parameters fixed). The resulting spectral efficiencies ζmax are shown
in the right-most column of Table 1, verifying further noticeable
performance gains. E.g., optimized power allocation improves the
canonical biorthogonal MPMC system {g(t),γγγ(t)} from ζmax =
7.35 bits/s/Hz (with Ca = I) to ζmax = 7.91 bits/s/Hz (with Ca,opt =
diag{1.23,1.23,1.43,0.11}).

We next perform joint iterative optimization of pulse shapes
and power allocation, starting with the transmit pulse g⊥(t) (con-
sisting of the R = 4 Hermite functions) and with uniform power al-
location. With only three iteration loops we obtained an optimized
(orthogonal) MPMC system with pulses g̃(t) shown in Fig. 2(c) and
power allocation Ca,opt = diag{1.19,1.18,1.13,0.50}. The spec-
tral efficiency bound for this system equals ζmax = 8.30 bit/s/Hz.
Compared to the conventional system design (canonical biorthog-
onal pulse, uniform power allocation), this is an improvement of
0.95 bit/s/Hz. The gap to the interference free spectral efficiency of
8.67 bit/s/Hz is only 0.37 bit/s/Hz.

Experiment 2. We next investigate the dependence of ζmax on the
TF lattice parameters for MPMC systems with R = 4 and Ca = I.
We redesigned the system {g⊥(t),γγγ⊥,opt(t)} for various redundan-
cies T F

R ∈ [1.025,1.3], starting with Hermite initial pulses. The
maximum spectral efficiency ζmax obtained for the various redun-
dancies is depicted in Fig. 3(a) for SNRs of 20 and 30 dB and vari-
ous channel spread factors 4τmaxνmax ∈ {0,0.0025,0.01}.

For comparison, we optimized a conventional single-pulse MC
system (R = 1) for the same redundancies, starting from a Gaus-
sian transmit pulse3 (i.e., the first Hermite function). The result is
depicted in Fig. 3(b).

It is seen that the MPMC system consistently outperforms the
single-pulse system, with a gain of more than 1 bit/s/Hz in the inter-
ference-limited case (SNR=30 dB and 4τmaxνmax = 0.01). It is
further seen that the MPMC system is more robust against chan-
nel dispersion in the sense that for a certain choice of T F/R, the
spectral efficiency of the MPMC system depends much less on the
channel spread than that of the single-pulse system. Finally, for
given channel parameters, both systems feature an optimum redun-
dancy T F/R for which ζmax is maximum. This optimum redun-
dancy decreases with decreasing SNR (noise limited case) and in-
creases with increasing channel spread (interference limited case).
Note however, that the optimum redundancy of the MPMC system
depends much less on the channel parameters.

3MC systems with orthogonalized Gaussian pulses have been proposed
in [6] and can equivalently be obtained by the so-called IOTA approach [10].

1 1.1 1.2 1.3
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9

10

1 1.1 1.2 1.3
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T F/RT F/R

R = 4 R = 1

(a) (b)

ζ m
ax

[b
it/

s/
H

z]

ζ m
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it/

s/
H

z]

SNR=30dB SNR=30dB

SNR=20dB SNR=20dB

Figure 3: Spectral efficiency bound ζmax versus T F/R for (a) op-
timized MPMC system and (b) optimized single-pulse MC system
for different SNRs and channel spread factors 4τmaxνmax equal to
0 (dash-dotted), 0.0025 (dashed), 0.01 (solid).

6. CONCLUSIONS

We considered a recently introduced communication scheme termed
multipulse multicarrier (MPMC) modulation and performed an in-
terference analysis of MPMC transmissions over random time-vary-
ing channels. Based on this analysis, we defined various system
performance measures and developed algorithms and guidelines for
optimizing pulse shapes, power allocation, and time-frequency lat-
tice parameters of MPMC systems. Numerical simulations showed
significant optimization gains as well as the superiority of MPMC
systems over traditional single-pulse multicarrier systems.
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