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ABSTRACT

Channel estimation for single-input multiple-output
(SIMO) time-varying channels is considered using superim-
posed training. The time-varying channel is assumed to be
described by a complex exponential basis expansion model
(CE-BEM). A periodic (non-random) training sequence is
arithmetically added (superimposed) at a low power to the
information sequence at the transmitter before modulation
and transmission. A two-step approach is adopted where
in the first step we estimate the channel using only the
first-order statistics of the data. Using the estimated chan-
nel from the first step, a Viterbi detector is used to estimate
the information sequence. In the second step a determinis-
tic maximum likelihood (DML) approach is used to itera-
tively estimate the SIMO channel and the information se-
quences sequentially. An illustrative computer simulation
example is presented where a frequency-selective channel
is randomly generated with different Doppler spreads via
Jakes’ model.

1. INTRODUCTION

Consider a time-varying SIMO (single-input multiple-
output) FIR (finite impulse response) linear channel with
N outputs. Let {s(n)} denote a scalar sequence which is
input to the SIMO time-varying channel with discrete-time
impulse response {h(n;l)} (N-vector channel response at
time n to a unit input at time n — [). The vector channel
may be the result of multiple receive antennas and/or over-
sampling at the receiver. Then the symbol-rate, channel
output vector is given by

L

x(n) =Y h(n;l)s(n —1). (1)

=0

In a complex exponential basis expansion representation [4]
it is assumed that

Q
h(n;l) = Y (e’ (2)
q=1
where N-column vectors hy(1) (for ¢ = 1,2, - - -, Q) are time-

invariant. Eqn. (2) is a basis expansion of h(n;!) in the time
variable n onto complex exponentials with frequencies {wq}.
The noisy measurements of x(n) are given by

y(n) = x(n) +v(n) 3)

A main objective in communications is to recover s(n)
given noisy {x(n)}. In several approaches this requires
knowledge of the channel impulse response [11], [9]. In
training-based approach, s(n) = ¢(n) = training sequence
(known to the receiver) for (say) n = 0,1,---, My — 1 and
s(n) for n > M; — 1 is the information sequence (unknown
apriori to the receiver) [11], [9]. Therefore, given c¢(n)
and corresponding noisy x(n), one estimates the channel
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via least-squares and related approaches. For time-varying
channels, one has to send a training signal frequently and
periodically to keep up with the changing channel. This
wastes resources. An alternative is to estimate the channel
based solely on noisy x(n) exploiting statistical and other
properties of {s(n)} [11], [9]. This is the blind channel es-
timation approach. In semi-blind approaches, there is a
training sequence but one uses the non-training based data
also to improve the training-based results: it uses a com-
bination of training and blind cost functions. This allows
one to shorten the training period. Optimal placement and
performance lower bounds for semi-blind approaches are in
[1] and [2]. More recently a superimposed training based
approach has been explored where one takes

s(n) = b(n) + c(n), (4)

where {b(n)} is the information sequence and {c(n)} is a
training (pilot) sequence added (superimposed) at a low
power to the information sequence at the transmitter be-
fore modulation and transmission. There is no loss in in-
formation rate. On the other hand, some useful power is
wasted in superimposed training which could have other-
wise been allocated to the information sequence. Super-
imposed training-based approaches have been discussed in
[5], [6] and [8] for SISO systems. Periodic superimposed
training for channel estimation via first-order statistics for
SISO systems have been discussed in [15] and [13] for time-
invariant channels, and in [12] for both time-invariant and
time-varying (CE-BEM based) channels. In [3] performance
bounds for training and superimposed training-based semi-
blind SISO channel estimation for time-varying flat fading
channels have been discussed.

Objectives and Contributions: In this paper we
extend the first-order statistics-based approach of [12] for
time-varying (CE-BEM based) channels to semiblind ver-
sions using Viterbi detectors. The first-order statistics-
based approach views the information sequence as interfer-
ence whereas in semiblind versions it is exploited to enhance
channel estimation and information sequence detection.

Notation: Superscripts H, T and 1 denote the complex
conjugate transpose, the transpose and the Moore-Penrose
pseudo-inverse operations, respectively. d(7) is the Kro-
necker delta and Iy is the N x N identity matrix. The
symbol ® denotes the Kronecker product.

1.1. On CE-BEM Representation

We now briefly discuss the CE-BEM representation of time-
varying communications channels, following [4] and partic-
ularly [7], to consider practical situations where the ba-
sis frequencies wg’s would be known apriori. Consider a
time-varying (e.g. mobile wireless) channel with complex
baseband, continuous-time, received signal x(¢) and trans-
mitted complex baseband, continuous-time information sig-
nal s(t) (with symbol interval T sec.) related by h(t;7)
which is the time-varying impulse response of the chan-
nel (response at time ¢ to a unit impulse at time ¢ — 7).
Let 74 denote the (multipath) delay-spread of the chan-
nel and let fg denote the Doppler spread of the channel.
If z(t) is sampled once every T, sec. (symbol rate), then
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by [7], for ¢ = nTs € [to,to + T'Ts), the sampled signal
xz(n) := z(t)|+=n7, has the representation

z(n) = > h(n;l)s(n —1) (5)

where o
h(n;l) = hy(1)e? ™, (6)

q=1
wy = 2?” (q— % _ %) L= ra/T.], Q= 2[faTT]+1.

7
This is a scenario where the CE-BEM representation is a(up2
propriate. The above representation is valid over a duration
of T'Ts seconds (T samples). Eqn. (1) arises if we follow (5)
and consider a SIMO model arising due to multiple anten-
nas at the receiver.

2. FIRST-ORDER STATISTICS-BASED
SOLUTION OF [12]
Assume the following:
(H1) The time-varying channel {h(n;!)} satisfies (2) where

the frequencies wy (¢ = 1,2,---,Q) are distinct and
known (cf. Sec. 1.1) with wq € [0,27). Also N > 1.

(H2) The information sequence {b(n)} is zero-mean, white
with E{|b(n)|?} = 1.

(H3) The measurement noise {v(n)} is nonzero-mean
(E{v(n)} = m), white, uncorrelated with {b(n)}, with
E{[v(n+7)—m][v(n) —m]?} = 62Ix6(7). The mean
vector m may be unknown.

(H4) The superimposed training sequence ¢(n) = c¢(n+mP)
Vm,n is a non-random periodic sequence with period

By (H4), we have ¢y, == + E::—Ol e(n)e~domn,
P-1
)= 5 ene s a9
m=0

The coefficients ¢, are known at the receiver since {¢(n)}
is known. We have
E{y(n)} =

Q P-1 L
> [Z thq(l)ej“""’] watemn 4 (9)

gq=1 m=0 L1=0

=:dmgq

Suppose that we pick P to be such that (wq + am)’s are
all distinct for any choice of m and q. Then the sequence
E{y(n)} is (almost) periodic with cycle frequencies (wq +
am), 1 <¢<Q,0<m< P—1. A mean-square (m.s.)

consistent estimate dymg of dimg, for wg + am # 0, follows as

el

T

. 1 »

dmg = E y(n)e I (@ateamm (10)
n=1

As T — o0, dimg — dmg m.s. if wg + am # 0 and dog —
dog + m ms. if wg + am = 0.

It is established in [12] that given dmq for 1 < ¢ < @ and
1 <m < P —1, we can (uniquely) estimate hy(l)’s if P >

L+2, o #0, and ¢ # 0 Vm # 0. Since m is unknown,
we will omit the term m = 0 for further discussion. Define

1 e*jal e*quL
1 e*jtw . e*ja2L
V = . . . . ’
: .7'a _ '7'04 _1L
1 e JeP-1 e JapP-1 (P—1)x(L+1)
(11)
Do = [dy1, die, -, digl”, [NQI x 1, (12)
H, := [h{(l)a h2T(l)7 M) hg(l)]Tv [NQ] x 1, (13)
HY 7, [(L+1)NQIx 1, (14)

H:=[ Hf! HY
D

= [ Df Df pE_, ", [(P-1)NQ X 1,
(15)
C:= (diag{cl,CQ,-n,cP,l}V) RIng. (16)

=V

Omitting the term m = 0 and using the definition of dmg
from (9), it follows that

CH=D. (17)

It is shown in [12] that if P — 1 > L 4+ 1 and (wq + am)’s
are distinct Vg and Vm, rank(C) = NQ(L + 1); hence, we
can determine the hg(l)’s uniquely. Define

]jm = [aﬁlv a77;127 Tty a%Q}T (18)
and define D as in (15) with D,,’s replaced with D,.’s.
Then we have the channel estimate

H=(c"c)"'c"D. (19)

3. DETERMINISTIC MAXIMUM
LIKELIHOOD (DML) APPROACH

The first-order statistics-based approach of Sec. 2 views the
information sequence as interference. Since the training
and information sequences of a given user pass through an
identical channel, this fact can be exploited to enhance the
channel estimation performance via a semiblind approach.
We consider joint channel and information sequence estima-
tion via an iterative DML approach. We have guaranteed
convergence to a local maximum. Furthermore, if we initial-
ize with our superimposed training-based solution, one is
guaranteed the global extremum (minimum error probabil-
ity sequence estimator) if the superimposed training-based
solution is “good.”

Suppose that we have collected T' samples of the obser-
vations. Form the vector

Y=y (1), y' (T-1),-,y (L+1]". (20
Similarly, define
s:=[s(T), s(T = 1),---,s(1)]" (21)

We then have the following linear model (v(n) := v(n)—m)

v(T) m
Y=TEH+| : |[+] : (22)

v(L) m

-7 =M

I - 798



where V = V 4+ M is a column-vector consisting of samples
of noise {v(n)}, H is defined in (14),

S(T)ET S(T - L)ZT
S(T— 1)ZT71 S(T—L— 1)2’1“71
T(s) := . .
s(L+ 1%y s(1)Sy,
(23)
Yo = [ RNy SNSRI L L N eIven Iy ] (24)

Consider (1), (3) and (22). Under the assumption of
white Gaussian measurement noise, consider the joint esti-
mators

{7/'(\,/5\, m} —arg{ﬁnin |Y—T(S)'H—M||2} (25)

where 8 is the estimate of s. In the above we have followed a
DML approach assuming no statistical model for the input
sequences {s(n)}. Under a white Gaussian noise assump-
tion, the DML estimators are obtained by the nonlinear
least-squares optimization (25). We have

Y=T@ES)H+V+M=CH)s+V+M  (26)

h(T;0) h(T; L)

h(L+1;L)

(27)
is a “filtering matrix.” We therefore have a separable non-
linear least-squares problem that can be solved sequentially
as (joint optimization w.r.t. H,m can be further “sepa-
rated”)

h(L + 1;0)

{H,s,m} = arg min{min||Y — 7T (s)H - M]|[21(28)

= arg 7r_r(lin{min I|lY — C(H)s — M|[}.(29)

SISO system; Jakes model: Data 400*500; SNR=25dB, TIR=0.3; Viterbi algorithm
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Figure 1. BER: circle: estimate channel using superimposed
training and then design a Viterbi detector; square: first iteration
specified by Step 2 (Sec. 3); triangle: second iteration specified
by Step 2 (Sec. 3); dot-dashed: estimate channel using conven-
tional time-multiplexed training of length 46 bits in the middle
of a subblock of length 200 bits and then design a Viterbi de-
tector. Training-to-information symbol power ratio =0.3 (-1.14
dB). Record length = 400 bits. Results based on 500 Monte
Carlo runs.

The finite alphabet properties of the information se-
quences can also be incorporated into the DML methods.
These algorithms, first proposed by Seshadri [10] for time-
invariant SISO systems, iterate between estimates of the
channel and the input sequences. At iteration k, with an
initial guess of the channel H*) and the mean m® | the al-
gorithm estimates the input sequence s*) and the channel
H**D and mean m**Y for the next iteration by

s — arg mig Iy — C(H(k))s _ M(k)HQv (30)

sE
A = argmin ||y — T(sWyH - MY, (31)
m®*Y = argmin ||V — T(s®)H*HD — M|, (32)

where S is the (discrete) domain of s. The optimizations
in (31) and (32) are linear least squares problems whereas
the the optimization in (30) can be achieved by using the
Viterbi algorithm [9]. Since the above iterative procedure
involving (30), (31) and (32) decreases the cost at every
iteration, one achieves a local minimum of the nonlinear
least-squares cost (local maximum of DML function).

SISO system; Data 400*100; SNR=25dB; TIR=0.3; Viterbi algorithm
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Figure 2. Asin Fig. 2 except that NCMSE (normalized chan-
nel mean-square error) is shown.

We now summarize our DML approach:
1) a) Use (19) to estimate the channel using the first-
order (cyclostationary) statistics of the observa-

tions. Denote the channel estimates by HD and

/l;((ll)(l). In this method {c(n)} is known and {b(n)}
is regarded as interference.
b) Estimate the mean m) as follows. Define (recall

(D-(3))

m® = (1/7) Y "[y(n) = Y 8V (m;D)e(n - D)]

n=1 =0
(33)
where

o

b (1) := Y "R ()" (34)

q=1
¢) Design a Viterbi sequence detector to estimate
{s(n)} as {5(n)} using the estimated channel H"),

mean m") and cost (30) with &k = 1. [Note that
knowledge of {¢(n)} is used in s(n) = b(n) + c(n),
therefore, we are in essence estimating b(n) in the
Viterbi detector.]
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2) a) Substitute 5(n) for s(n) in (1) and use the corre-
sponding formulation in (22) to estimate the chan-
nel H as

1 = 7(3) [Y - /\7“)} . (35)

The mean m is estimated as m® using (33) with
h™ replaced with h®® obtained from ﬁg” as in
(34).

b) Design a Viterbi sequence detector using the esti-
mated channel H®, mean m® and cost (30) with
k =2, as in Step lc.

3) Step 2 provides one iteration of (30)-(31). Repeat a
few times if so desired.

4. SIMULATION EXAMPLE

Consider (1) with N = 1 and L = 2. We simulate a ran-
dom time- and frequency-selective Rayleigh fading channel
following [14]. For different I’s, h(n;l)’s are mutually in-
dependent and for a given [, we follow the modified Jakes’
model [14] to generate h(n;l):

h(n;l) = X (t)|t=nTs, (36)

X(t) = \/% Zfil eIVicos(2m fatcos(au)+ ), i = (2mi—m+
0)/(4M),i=1,2,---, M, random variables 6, ¢ and v; are
mutually independent (Vi) and uniformly distributed over
[0,27), Ts = symbol interval, fq= (max.) Doppler spread
and M = 25. For a fixed [, (36) generates a random process
{h(n;1)}» whose power spectrum approximates the Jakes’

spectrum as M | oo. We consider a system with carrier
frequency of 2GHz, data rate of 40kB (kB= kilo-Bauds),

therefore, Ts = 25x107° sec., and a varying Doppler spread
fa in the range OHz to 200Hz (corresponding to a maximum
mobile velocity in the range 0 to 108km/hr). We picked
a data record length of 400 symbols (time duration of 10
msec.). For a given Doppler spread, we pick @ as in Sec.

1 (T'=400, L=2 in (7)). For the chosen parameters it
varies within the values {1,3,5}. We emphasize that the
CE-BEM was used only for processing at the receiver; the
data were generated using (36), not the CE-BEM.

For comparison, we consider conventional training assum-
ing time-invariant channels. The block of data of length
400 symbols was split into two non-overlapping blocks of
200 symbols each, Each subblock had a training sequence
length of 46 symbols in the middle of the data subblock. As-
suming synchronization, time-invariant channels were esti-
mated using conventional training and used for information
detection via a Viterbi algorithm; this was done for each
subblock. We take all sequences (information and train-
ing) to be binary. For superimposed training, we take a
periodic (scaled) binary sequence of period P = 7 with the
training-to-information sequence power ratio (TIR) of 0.3
where

TIR = 02 /o, (37)

and of and o2 denote the average power in the information
sequence {b(n)} and training sequence {c(n)}, respectively.
Complex white zero-mean Gaussian noise was added to the
received signal and scaled to achieve a target bit SNR at
the receiver (relative to the contribution of {s(n)}).

Fig. 1 show the BER (bit error rate) based on 500 Monte
Carlo runs for conventional training, the method of [12],
and the proposed approximate DML approach with two it-
erations, under varying Doppler spreads f4 and a bit SNR of
25dB. It is seen that as Doppler spread f4 increases beyond
about 60Hz (normalized Doppler Tsfq of 0.0015), super-
imposed training approach of [12] (Step 1) outperforms the
conventional (midamble) training with time-invariant chan-
nel approximation, without decreasing the information rate.

Furthermore, the proposed DML enhancement can lead to
a significant improvement with just one iteration. Fig. 2
shows the normalized channel mean-square error (NCMSE),
defined (before averaging over runs) as

T 2
NCMSE = ZZ\ﬁ(n,l) — h(n;1

n=1 =0

5. CONCLUSIONS

The approach of [12] to SIMO CE-BEM-based time-varying
channel estimation using superimposed training sequences
(hidden pilots) and first-order statistics was extended to
semiblind versions thereof. The results were illustrated
via a simulation example involving time- and frequency-
selective Rayleigh fading.
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