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Abstract

The strong association existing between subbands audio 
envelope parameters and video parameters extracted using the 
full DCT (Discrete Cosinus Transform) can be exploited for
audiovisual speech enhancement, thanks to a good prediction
of amplitude variations by a statistical model. Since the video 
parameter space is highly multidimensional, the causality of
this association must be clarified. At first, a new method of
retro-marking is proposed in order to build a transformation
function of DCT parameters into explicit ABS mouth opening 
parameters. Secondly a reduction to single parameter spaces is
performed by selection of the best parameters. We show in 
two noisy conditions that the degradation of the enhancement 
performance due to the transformation and to the reduction is 
moderate.

1. Introduction 

Recent experimental studies [6, 9] show that audiovisual detection of
speech in noise is improved by low level acoustic-visual associations 
existing between subband envelopes and visible speech cues. The 
modeling of this low level interaction using linear models proposed by
Yehia et al. [11] suggests systematically defining the representations
of the two signals leading to a significant linear association. Using the 
audio visual enhancement paradigm, it has been shown that the audio 
representation using four subband envelopes (named Sb4) works
better than LSP (Line Spectral Pairs) or 16-filterbank representations 
[2,3]. But, for the video parameterization, this previous study followed 
the so-called ‘pixel-based’ approach and used the full DCT format
restricted to a high number of parameters (288) only. The aim of the 
present work is to explicit the video parameters which are available for
speech enhancement, which are probably those grounding the 
perceptive phenomenon of audio-visual coherence.

2. Database and parameter types 

2.1 The audio-visual database 

The database was recorded for developing an audio-visual speech
recognition system [7] based on natural images. This is a repetition of 
a subset of Numbers95 (OGI) by a single female speaker. The mouth
region is well centered and fixed. In the database content, 64*78 RGB 
images are available after spatial sub-sampling, and at 50ips. The
audio is down-sampled from 22KHz to 11KHz. The dataset is
composed of about 40000 BMP images taken in the same continuous
sequence. The first half is used for training and a part of the second 
half (about 6 min) for testing.

The sequences are composed of groups (sentences) of English digits 
and numbers, among 30 different words, separated by silence periods,
during which the speaker’s mouth is closed. In the present study, two

types of noise are used, artificial white noise and natural crowd noise 
(the same as in [10]). As in [2], a speech interference condition was 
tested, but the results are less contrasted and then not reported. In
order to improve the testing procedure developed in [2,3] the same
long test sequence was added with the same noise sequence at 
different levels, in the [-18,6]dB SNR range, by step of -3 dB, this in 
the two noise conditions.

2.2 Audio parameters 

In order to fit with the classical MFCC representation, the speech 
signal is decomposed with a Mel-scaled filterbank instead of a Bark-
scaled one as in [2,3]. The single audio representation is the spectrally 
coarse Sb4, using a filterbank composed of four quasi-rectangular 
filters (Figure 1). To obtain the audio data X, in every 40ms half
overlapping hanning window (i.e., at 50 fps), the amplitude levels are 
calculated in dB RMS.
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Figure 1: Filterbank design for Sb4. The four quasi-rectangular filters 
have their high frequency cutoff frequency at: 1) 549 Hz, 2) 1378 Hz,
3) 2783 Hz, 4) 5125 Hz.

2.3 Video parameters 

The video parameters are extracted using the full DCT of the initial
64*78 images stored in the database, converted in gray-levels. The
audiovisual speech recognition study [7] demonstrated that a small
number of DCT parameters, of about thirty, are enough for reaching 
an optimal video recognition score. These are low frequency domain
coefficients, which are distributed more vertically than horizontally. 
This indicates that the phonetic information is well carried by the
small subset of DCT parameters having the largest variability.
However, this has the great advantage of the so called pixel-based
approach to avoid the use of any face marker. As in the previous 
studies, the block of first 24*12 (288) DCT parameters have been
selected as video parameters, in order to maximize the content of
available information, in the DCT condition here considered as a 
baseline.

Following the geometrical approach of video parameterization, the 
ABS parameters describe the mouth opening (6 parameters, Figure 2,
bottom) and they were classically used at ICP thanks to their excellent
properties for carrying explicitly the lip-reading information.
Consistently, our first research about the acoustic-visual associations 
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involved this type of parameterization [1]. Practically, the extraction 
of ABS parameters from natural images requires a quite complex
processing, susceptible to also introduce artifacts. In order to recover 
ABS parameters from the unmarked images of our video database, a
new ‘retro-marking’ technique is proposed (Figure 2). A 
transformation function is established relating the DCT and ABS 
parameter spaces, via a Self Organizing Map (SOM). The SOM 
algorithm was applied on the training section of the video database,
with 288 DCT parameters and 10*10 output vectors. Despite the high 
number of input parameters, the convergence was remarkably good
and easy to reach, showing that the intrinsic dimensionality is very 
low. Then, the 10*10 components of the bi-dimensional map (SOM
DCT) were transformed by inverse DCT and smoothing for
visualization. This map is composed, as the input database, of about 
half of close mouth states corresponding to silent periods. A first axe 
(horizontal in Figure 2) represents the degree of mouth opening and 
the second one, vertical, the mouth rounding. The visualization of the
100 components allows drawing by hands on each of them the 8 
points needed for defining the 6 ABS parameters and building a
second map (SOM ABS, Figure 2). Then the transformation function 
can be applied over any section of the database because a common
SOM label is attributed to each frame using the SOM DCT. The
related ABS parameters are selected from the SOM ABS using these
labels. Particularly, the train section is marked retroactively 
(suggesting the name of the method: ‘retro-marking’).
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Figure 2: Principle of the retro-marking technique for derivation of
the ABS mouth opening parameters from DCT parameters trough a 
natural image database. 

The reduction of the two parametric spaces DCT and ABS, to mono-
parametric representations of the video data is also based on the two 
sets of SOM components because these are representative of the
whole database content. In the two cases the reduction is performed
by selecting a single parameter in each space with simple heuristics. 
In the DCT space, a quasi diagonal parameter is preferred because it 
reflects both vertical and horizontal variations. Then, the linear
correlation coefficient between all DCT(i,i) and the 6 ABS parameters
is established over the 100 components. The parameters A,A’ have
the worse correlation pattern. For the ABS space, the inner and outer 
mouth area S and S’ (both calculated by S=A.B/2) are a priori the
most informative about the mouth opening state because they include
both A and B (resp. A’ and B’). Finally, the DCT(5,5) parameter has 
been selected together with S, and the superimposition of the 
averaged mouth shape with the related receptive field (Figure 3, COS 
method) shows its potential ability to well capture the variations of S. 
Comparatively with the full DCT, the computational cost is greatly 
reduced since the evaluation of the single output parameter is a 
multiplication of receptive field values by the gray levels of each 
image, followed by a summation. An additional simplification of this 
method for fast video processing substitutes the sign (-1 or 1) of this 
receptive field, leading to a checkerboard pattern (Figure 3, Check 
method).

Let remark that the output signal is sensitive to the position of the 
mouth inside the receptive fields of COS and Check. This has a weak 
impact in the current framework because the ROI is fixed, but this is a 
drawback for building a realistic application. 

Figure 3: Receptive fields of the COS (left) and Check (right)
methods. The average mouth shape is superimposed in the ABS 
format. The inner mouth area (S parameter) is filled.

Method DCT ABS S COS Check
nbp 288 6 1 1 1

Table 1: Number of video parameters (nbp) for the 5 methods.

3. The enhancement process 

3.1 Linear estimation stage 

According to Yehia et al. [11], a linear statistical model of the audio-
visual relationships is built, which allows the prediction of audio data 
from video data and conversely (see [3]). For each of the 5 methods
previously defined, the linear transformation matrix (or vector, for
mono-parametric methods) Tyx from video data Y to audio data X is 
estimated from the two time-aligned data sets of the train section (the 
set of ABS parameters was derived with the retro-marking technique):

1)))((())(( TyyTyxyx YYYXT

The size of Tyx is 4*nbp (nbp, Table 1). The means are calculated over
the train section of the database. Then, the estimation of the four audio
parameters per frame, at 50 fps, with the video part of the test section 
(Y), follows a linear rule (in which the audio mean is derived from the 
train section which is clean):
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Figure 4: Typical output of the linear estimation process for the S and 
COS methods.

In Figure 4, a typical output of the linear estimation stage shows that 
the mono-parametric methods are able to generate estimates which are
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temporally correlated with the clean signal envelopes. For the 
enhancement task, each predicted coefficient is temporally filtered
with a 4th order butterworth filter having a cutoff frequency (6.25Hz) 
above the vocal tract motion range, this is order to reduce the large
deviations we observe otherwise in the linear scale. The block diagram
of the enhancement process, the same for all methods, is shown Figure
5.

3.2 Wiener filtering of the noisy audio 

The Wiener filtering stage consists in decomposing the noisy signal 
with the four subbands filterbank (Figure 1), and then, the amplitude
of the signal arising in each subband time frame is modulated with the 
related audio estimate. This is by paired multiplication of the linear 
amplitude values. A reference noted Sb4ref is allowed by the
weighting of the noisy signal first decomposed with the quasi-
rectangular filterbank, by the linear RMS envelope of the clean signal.
In [2,3], the main motivation of having a spectrally coarse Wiener 
filtering stage was because the spectral information which can be 
inferred from the video signal is very limited. In the present study, the
reduction of the video data to a single parameter (S, COS, Check),
together with the use of a linear model, dramatically restricts the 
prediction in the spectral domain. Particularly, a single video 
parameter cannot represent the rounding of the mouth as well as ABS
parameters (and according to the dual structure of SOM DCT, as DCT
parameters). So the spectral features associated with the degree of
rounding cannot be predicted. Using the single parameter methods,
only the association between the degree of opening of the mouth and 
the amplitude of the speech envelopes is expected to operate, with the 
possibility to globally bandpass the speech signal without introducing 
great spectral distortions.

Characteristics

50 fps, gray levels

50fps, DCT or ABS

50fps, Sb4

Butterworth 4th, fc=6.25 Hz

11 KHz

Video-signal

parameters
Tyx, means

Linear
estimation

Temporal
filtering

Wiener filtering

Noisy audio 11 KHz

Output
Figure 5: Block diagram and data format of the enhancement process.

4. Evaluation of the enhancement 

4.1 Reconstruction accuracy and gain indexes 

As in [2,3], we define a spectral distance using the clean speech signal
as a reference: the Reconstruction Accuracy (RA) measure. We fix the 
time-frame duration analysis at 40ms, and the speech silences (defined
in clean) are excluded from this statistic. A full-band spectral distance
is calculated between the reference R, which is the clean speech, and a 
signal S. All the spectra are normalized at 1 for removing the effect of
global amplitude differences:

2))(S)(R(

2)(R
log10S)RA(R,

FS/20,/2where

The RA is an objective index for comparative studies, but the 
effective gain is the difference between the output RA (S is an output)
and the input RA (S’ is an input):

)S'RA(R,-S)RA(R,Gain
This spectral gain estimate removes the overall amplitude gain, thanks 
to the normalization, and it is sensitive to the spectral distortions. Let
remark this is a drawback for differentiating the mono-parametric
methods, because their audio estimates have by construction similar
spectral characteristics. On the other hand, the temporal effect on the 
overall amplitude is not appreciated. The aim is to preserve the
continuity with previous studies.

4.2 Results 

For the white noise condition, the RA of the five methods stays
between the two references, Sb4ref, built using the clean speech and
RA(R,S’), calculated with the noisy speech. The ranking is by average
DCT>ABS>S~Check~COS, and it does not vary significantly with the
SNR (Figure 6, Table 2). The main observation is that the degradation
(relative to the DCT baseline) introduced by the reduction to a single 
parameter is moderate and close to this produced by the ABS 
transformation. The three mono-parametric methods have very close
performances, but this similarity is probably due to the index itself.
The expected equivalence between S and COS methods is better
assumed by the generation of correlated estimates (Figure 4), as well 
as by the direct observation of the high cross-correlation of the video 
parameters (not shown). Obviously, the receptive fields of COS and
Check are similar by construction.

In the crowd noise condition, which is more natural, the ranking of the
methods and the pattern of results remains the same, but the gain is not 
well established because the RA(R,S’) is too high in low noise. The 
quality of the enhancement is also attested by the listening of the 
output signal in both conditions.
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Figure 6: Variation of the RA (in dB) with the input SNR, in the 
white noise condition.

SNR Sb4ref DCT ABS S COS Check
6 13.11 11.65 10.60 10.31 10.18 10.26
3 12.86 11.15 10.25 9.93 9.82 9.89
0 12.38 10.40 9.71 9.35 9.24 9.31
-3 11.51 9.37 8.90 8.49 8.39 8.46
-6 10.13 8.07 7.79 7.37 7.27 7.33
-9 8.36 6.62 6.48 6.08 6.00 6.05

-12 6.55 5.21 5.17 4.82 4.76 4.80
-15 4.99 4.02 4.03 3.76 3.71 3.74
-18 3.82 3.12 3.15 2.95 2.91 2.93

mean 9.30 7.73 7.34 7.01 6.92 6.97
gain 5.63 4.06 3.67 3.33 3.25 3.30

Table 2: Values of the RA (in dB) in the white noise condition. The
last row indicates the average gain. 
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Figure 7: Variation of the RA (in dB) with the input SNR, in the 
crowd noise condition.

SNR Sb4ref DCT ABS S COS Check
6 12.33 11.00 9.93 9.63 9.46 9.52
3 11.65 10.27 9.39 9.11 8.96 9.01
0 10.68 9.31 8.64 8.40 8.26 8.31
-3 9.37 8.11 7.66 7.47 7.37 7.40
-6 7.80 6.76 6.50 6.36 6.29 6.32
-9 6.16 5.36 5.24 5.15 5.12 5.13

-12 4.65 4.07 4.02 3.98 3.97 3.97
-15 3.39 2.99 2.98 2.96 2.96 2.96
-18 2.44 2.17 2.16 2.17 2.17 2.17

mean 7.61 6.67 6.28 6.14 6.06 6.09
Table 3: Values of the RA (in dB) in the crowd noise condition.

5. Conclusion 

We have shown in the context of the audiovisual enhancement
paradigm, that the so-called pixel-based and geometric approaches for
video parameterization are grounded on the same underlying video 
features. This modeling study corroborates human experiments [6,9,
10] suggesting that mouth opening (and particularly, area) and 
subband envelopes of the audio signal are appropriate representational
supports of audiovisual coherence and, on the signal processing point 
of view, of the audiovisual redundancy.

As a straight perspective, the audiovisual enhancement scheme could 
be improved thanks to a nonlinear model (this was not adapted for a
comparison study) as in [1]. Secondly, in the same vein as [5], this 
model of speech enhancement is a possible front end for ASR
applications, working at the signal level (and not at the feature level).
This is currently evaluated using the same database and within the 
framework developed by Heckmann et al. [7]. These results are 
expected for confirming those obtained with the RA (subject to 
discussion). Hence, beyond the audio-visual speech enhancement task, 
the exploitation of the low-level audiovisual coherence offers wide 
perspectives in the fields of multi-modal signal processing (see [4]), 
telecommunication and man-machine interaction (e.g., in the MICAL 
project hosted at ICP). The estimated envelopes are enough temporally
correlated with the clean signal (Figure 4) to use this principle in a 
range of applications related to the extraction of a target speech signal 
in noise (detection, segmentation) or concurrent speech interference
(speaker discrimination, separation). A dual application is audio-visual
speaker’s mouth localization and modeling of the ventriloquist effect 
[8]. As a first proposal of implementation in the MICAL platform,
which is in line with the present study, the coarse position of the
speaker’s ROI in a video field could be determined by simple
correlation of audio (X) and video (Y) signals; e.g., with the Check
structure (Figure 3) for having a fast search. Moreover, using a
periodic receptive field structure, this localization estimate might be

improved because this is phase sensitive. Let remark that a drawback 
for the current speech enhancement task (phase sensitivity) could be 
turned into an advantage for audio visual localization. Further works
will specify the coupling between these two applications, enhancement
and localization, and the use of amplitude and phase information.
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