
MULTILINGUAL ACOUSTIC MODELS FOR SPEECH RECOGNITION AND SYNTHESIS

S. Kunzmann, V. Fischer, J. Gonzalez, O. Emam, C. Günther, E. Janke

IBM Pervasive Computing
European Voice Technology Development

Gottlieb-Daimler-Str. 12, D-68165 Mannheim, Germany

kunzmann@de.ibm.com

ABSTRACT

In this paper we review the design of a common phone al-
phabet for up to fifteen languages and describe its appli-
cation in two important components of a seamless multi-
lingual conversational system, namely speech recognition
and synthesis. We report on experiments that demonstrate
the advantages of multilingual acoustic models both for the
recognition of foreign names and non-native speech, and
describe the usefulness of a common phone alphabet for
the construction of unit selection based mono- and bilingual
speech synthesis systems.

1. INTRODUCTION

Both the tremendous growth of the Internet and the simulta-
neous convergence of mobile phones and palm-sized com-
puters has promoted speech recognition and synthesis into
the rank of a key technology for easy and natural access to
information from anywhere for everyone. However, the na-
ture of applications such as voice enabled Internet portals,
tourist information systems, or automated directory assis-
tance imposes significant new challenges on these technolo-
gies: while speech recognition must cope with, for example,
an increased number of non-native speakers with many dif-
ferent accents, speech synthesis must provide natural sound-
ing speech output for foreign words or phrases from a mul-
titude of languages. Clearly, the availability of such systems
in many languages is also important from an economic point
of view, which may be considered as one reason for the re-
cent interest in the creation of databases that include a rich
set of dialects as well as non-native speech, for example,
[1].

Multilingual acoustic modeling facilitates the develop-
ment of speech recognizers for languages for which only
little training data is available, and also allows reduced com-
plexity of applications by the creation of acoustic models
that can simultaneously recognize speech from several lan-
guages [2]. The use and combination of multilingual acous-
tic models has also proven advantageous for the recognition

of accented speech produced by a wide variety of non-native
speakers with different commands of the system’s operating
language [3].

Whereas the design of a common phone alphabet and
the sharing of (training) data from several languages is a
well established method in multilingual speech recognition,
it is an only emerging concept in the field of unit selection
based speech synthesis. Initial work on a common diphone
inventory for a seamless multilingual (or polyglot) speech
synthesizer is described in [4], but today’s systems usually
achieve speech output in multiple languages by use of two
or more language dependent synthesizers (see, for example,
[5]), which is frequently accompanied by switching to a dif-
ferent voice.

Aiming at the better utilization of potential synergies
between speech recognition and synthesis technologies, cf.
[6], we developed a common phonetic alphabet for fifteen
languages that can be used in both of these fields. After a
discussion of the main design issues in the next section, we
briefly review multilingual acoustic modeling techniques and
describe some experiments that demonstrate the benefits of
the chosen approach in a non-native speech recognition task.
Section 4 discusses the use of the common phonology in
the construction of a unit selection based speech synthesis
system and describes some initial work towards a bilingual
concatenative speech synthesizer. Finally, Section 5 gives a
conclusion and an outlook on further work towards multi-
lingual conversational systems.

2. COMMON PHONOLOGY

The definition of a common phonetic alphabet for multi-
lingual speech recognition has to consider two conflicting
design issues: on one hand the different sounds of each lan-
guage should be covered separately in order to achieve high
recognition accuracy, while on the other as many phones as
possible should be shared across languages both for efficient
utilization of training data and to achieve reasonably small
acoustic models.
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Starting from the existing phonetic alphabets for seven
languages (Arabic, British English, French, German, Ital-
ian, (Brazilian) Portuguese, and Spanish) we have designed
two common phonetic alphabets of different detail [7]. For
that purpose, the language specific phone sets were first sim-
plified following available SAMPA transcription guidelines
[8]; Arabic SAMPA has meanwhile been standardized as
part of the OrienTel project [1]. With this approach, lan-
guages were affected to different degrees: While the native
French phone set remained unchanged, we gave up syllabic
consonants for German, and at the same time introduced
new diphthongs for British English. In a second step, lan-
guage specific phones mapped to the same SAMPA symbol
were merged into a common unit. This yielded a common
phonetic alphabet of 121 phones (65 vowels, 56 consonants)
for the seven languages, cf. Table 1, which provides an over-
all reduction of 60 percent compared to the simplified lan-
guage specific phonologies.

total En Fr Gr It Es Pt Ar

vowels 65 20 17 23 14 10 20 14
cons. 56 24 19 26 32 30 22 29
total 121 44 36 49 46 40 42 43

Table 1. Number of vowels and consonants for seven lan-
guages in the detailed common phone set (a). Languages
are British English (En), French (Fr), German (Gr), Italian
(It), Spanish (Es), Brazilian Portuguese (Pt), Arabic (Ar).

In a less detailed common phonetic alphabet, cf. Ta-
ble 2, we gave up the distinction between stressed and un-
stressed vowels for Spanish, Italian, and Portuguese, and
represented all long vowels and diphthongs as as sequence
of two (identical) short vowels. In doing so, the average
number of languages that contribute to the training data for
each of the 76 phones (the sharing factor) increased from
2.28 to 2.53, or — if Arabic is not considered — from 2.74
to 3.56, while the average word error rate increased by 7
percent on an in-house database if compared to the more
detailed common phone alphabet [7].

total En Fr Gr It Es Pt Ar

vowels 31 13 15 17 7 5 12 11
cons. 45 24 19 23 28 24 22 28
total 76 37 34 40 35 29 34 39

Table 2. Number of vowels and consonants for seven lan-
guages in the reduced common phone set.

Given that this reduced phonology can be applied to
new languages with little or no change at all, we believe
this degradation to be tolerable and adjustable by improved

acoustic modeling, and have integrated eight additional lan-
guages with two more vowels and 12 more consonant phones,
cf. Table 3.

Cz Jp Fi El Nl Da No Sv

vowels 5 5 8 5 14 14 17 17
cons. 27 23 19 25 22 20 23 24
total 32 28 27 30 36 34 40 41

Table 3. Number of vowels and consonants additional lan-
guages integrated into the reduced common phonetic alpha-
bet: Czech (Cz), Japanese (Jp), Finnish (Fi), Greek (El),
Dutch (Nl), Danish (Da), Norwegian (No), Swedish (Sv).

3. MULTILINGUAL SPEECH RECOGNITION

Acoustic modeling for multilingual speech recognition to
a large extend makes use of well established methods for
(semi-)continuous Hidden-Markov-Model training. Meth-
ods that have been found of particular use in a multilingual
setting include, but are not limited to, the use of multilingual
seed HMMs, the use of language questions in phonetic de-
cision tree growing, polyphone decision tree specialization
for a better coverage of contexts from an unseen target lan-
guage, and the determination of an appropriate model com-
plexity by means of a Bayesian Information Criterion; cf.,
for example, [2, 9] for an overview and further references.

Having now reached a certain maturity, the benefits of
multilingual acoustic models are most evident in applica-
tions that require both robustness against foreign speakers
and the recognition of foreign words. We have simultane-
ously explored both of these when creating a Finnish name
dialer whose application directory consists of a mix of 6,000
Finnish and foreign names, and which is used by native and
non-native speakers.

For that purpose, we created acoustic models with dif-
ferent proportions of speech data from Finnish (SpeechDat-
II), US-English, UK-English, German, Italian and Spanish.
Table 4 gives details of the amount of training material that
was chosen based on some experience gathered in previous
experiments. While F70 is a mono-lingual Finnish acoustic
model, M01 through M10 incorporate increasing amounts
of data from the remaining languages (except Spanish). The
largest model (M10b) contains a total of 280,000 utterances,
equivalent to approx. 191 hours of speech (silence excluded).

The multi-lingual phonetic alphabet for the 5 languages
under consideration is a subset of 61 phones of the reduced
alphabet described above (29 phones are used for Finnish),
and the average number of languages that share a phone
is 3.05 for models M01 to M05 and 3.45 in case of M10
and M10b. Test data for UK-English (En), German (Gr),
Italian (It), and Spanish (Es) also included native names
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model Fi US En Gr It Es

F70 70.0 0 0 0 0 0
M01 70.0 3.0 0.8 1.5 0.5 0
M02 70.0 6.0 1.6 3.0 1.0 0
M05 70.0 15.0 10.0 7.5 2.5 0
M10 70.0 30.0 20.0 15.0 5.0 0
M10b 140.0 45.0 45.0 25.0 10.0 15.0

Table 4. Number of training utterances ( � 1000) used in
the various acoustic models.

word error rate [%]
Fi En Gr It Es

F70 2.63
M01 2.88 28.20 28.50 20.81 31.40
M02 2.25 21.70 21.50 17.54 24.10
M05 2.44 14.90 10.60 9.41 21.30
M10 2.44 11.10 7.70 7.83 14.70
M10b 2.07 11.50 10.40 4.86 6.40

Table 5. Word error rates vs. amount of non-Finnish train-
ing data for a 6000-name grammar task.

and foreign names from any of the other languages. While
the name dialer task was of primary interest in our inves-
tigations, for Finnish (Fi) we also experimented with other
recognition tasks (digit strings, natural numbers, and pho-
netically rich sentences, cf. also Table 7) in order to get a
better insight into the decoding of native speech when in-
corporating more foreign speech material.

Table 5 shows word error rates (WER) for a 6,000-name
grammar task as a function of the amount of non-Finnish
speech used in training. As expected, the error rate de-
creases as the amount of training speech increases. The ben-
efits of multilingual modeling also become evident in the
case of Spanish, even though the models were not trained
with any Spanish data. This suggests that the models learn
from the other languages, providing robustness against na-
tive Spanish speakers.

Table 6 provides further insight, demonstrating that in
general native speakers achieve better recognition rates for
native names than for foreign names. However, in case of
Spanish, which includes many foreign names from the other
languages, the accuracy on this test set increases.

Finally, Table 7 demonstrates the effects of an increased
amount of foreign training data on the decoding of native
speech uttered by native Finnish speakers, all recorded un-
der the same conditions. While (almost) no degradation
is observable for names and digit strings, we obtained an
increased error rate for numbers, which disappeared only
when the amount of training data was increased (see M10b).
Results in the rightmost column (”rich”) refer to the recog-
nition of phonetically rich sentences (recorded under differ-

word error rate [%]
(a) En Gr It Es

M01 24.70 24.00 23.76 31.50
M02 20.90 18.20 15.71 25.10
M05 12.30 9.20 10.64 21.40
M10 9.80 6.50 7.16 15.10
M10b 8.50 10.80 4.77 5.70

word error rate [%]
(b) En Gr It Es

M01 31.27 24.69 17.51 17.32
M02 28.26 23.08 16.84 15.18
M05 21.40 15.92 11.27 15.18
M10 15.22 13.15 10.88 9.64
M10b 16.56 13.06 10.21 10.18

Table 6. Word error rates for (a) native and (b) foreign
names in four languages.

word error rate [%]
digits names numbers rich

F70 1.13 2.63 12.12 7.38
M01 0.80 2.88 12.50 7.63
M02 1.11 2.25 13.27 7.88
M05 0.96 2.44 14.76 9.01
M10 1.04 2.44 14.94 8.76
M10b 1.10 2.07 11.65 9.13

Table 7. Word error rates for native Finnish speech.

ent conditions), and should be understood as work towards
even more ambitious applications.

4. MULTILINGUAL SPEECH SYNTHESIS

Considering the proper pronunciation of foreign words as
the speech synthesis equivalent of the accurate recognition
of non-native speech, a common phonetic alphabet and mul-
tilingual acoustic models suggest themselves also for the
use in unit selection based speech synthesis. So far, we
have applied this idea mainly to system construction, which
includes the automatic sub-phonemic labeling of the voice
data and the training of binary decision trees for the defini-
tion of acoustic contexts and prosodic target values [10, 11].

During the creation of the German version of the synthe-
sizer a better agreement between the speaker’s actual pro-
nunciation and the lexicon was achieved by the introduction
of nine English phonemes and the use of multilingual seed
HMMs in the alignment procedure. Since not yet produced
by the German front end during runtime, the positive effect
of these changes is mainly due to the avoidance of segmen-
tal errors in native German words; however, the new intro-
duced phones are also accessible for the proper pronuncia-
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tion of English loan words via exception dictionaries.
More recently, we have started to extend this approach

to the construction of a bilingual English/German speech
synthesizer. Since, for example, the distinction between
long and short vowels clearly is important for speech syn-
thesis, we used the more detailed common phonetic alpha-
bet (cf. Section 2) for that purpose. Based on a small com-
mon data base of approx. 2.25 hours of speech (English:
1.25 h, German: 1.0 h) produced by a non-professional, na-
tive German male speaker, the system can switch almost
arbitrarily (not yet within a word) between two separate
linguistic front ends, and is thus able to synthesize mono-
lingual as well as mixed-lingual speech.

Speaker dependent bilingual acoustic models turned out
to produce more accurate alignments than mono-lingualmod-
els, and — consequently — informal listening tests unveiled
almost no degradation when comparing the bilingual syn-
thesizer and its two mono-lingual counterparts, when acous-
tic contexts are determined by use of a decision tree with a
relatively small number of leaves.

lang. dep. leaves [%] splice rate [%]
leaves English German English German
8000 18.8 20.0 19.1 20.0

12000 21.7 23.3 21.2 21.5
24000 27.5 29.2 23.9 25.7

Table 8. Acoustic tree size vs. percentage of language
dependent contexts and splice rate (averaged over 50 sen-
tences) for bilingual synthesis.

Table 8 illustrates that a careful control of the acous-
tic tree size is essential for the production of good qual-
ity speech output in both languages: while attempting to
provide a better discrimination between both languages by
creating a larger number of sub-phonemic contexts, larger
acoustic trees also tend to produce an increased number of
splices, which are known to be a major source of noticeable
distortions in concatenative speech synthesis.

5. CONCLUSION AND FUTURE WORK

In this paper we reported on the use of two different com-
mon phonetic alphabets for multilingual speech recognition
and synthesis, and gave experimental results that confirm
the superiority of multilingual acoustic models for the recog-
nition of non-native speech and words from foreign vocab-
ularies.

Expecting more language and dialect data to be avail-
able in the future, we will continue to explore both acoustic
modeling techniques (e.g. articulatory features [12]) and the
integration of these languages into our common phonetic al-
phabets. For the latter, the focus of our work will be on the

development of alphabets that can be used jointly for recog-
nition and synthesis.

Considering the work described here as initial steps to-
wards a seamless multilingual conversational system, fur-
ther activities will also deal with the creation of multilin-
gual front ends for speech synthesis (cf., for example, [13])
as well as with the development of multilingual tools for
natural language understanding.
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