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ABSTRACT

An automatic approach for the detection of artifacts that
may be introduced in video analysis/synthesis coding is
presented. It is assumed that textures in a video scene can
be classified into two categories: textures with unimportant
subjective details and the remainder. We use this idea for
video coding with a texture analyzer at the encoder and a
texture synthesizer at the decoder. The analyzer identifies
detail-irrelevant textures and generates side information
for the synthesizer, which inserts synthetic textures at the
specified locations. Our approach can be integrated into
any video codec. This paper focuses on improvements of
the texture synthesizer and the avoidance of potentially
subjectively annoying spatial artifacts. The presented
automatic detector yields an artifact identification rate of
up to 89%. The former enables automatic online
evaluation of the quality of synthesized frames, which
allows eventual fallback on the reference video codec built
on, for coding erroneous macroblocks.

1. INTRODUCTION

In video analysis/synthesis coding, we assume that textures
with a large amount of visible detail, shown with limited
spatial resolution, do not need to be reconstructed
precisely by the decoder. The viewer should just be able to
identify the displayed texture without subjectively
noticeable artifacts. Compared to other textures such
textures (e.g. water, grass, trees, sand ...) typically are
requiring comparably large bit rates to code when using
mean squared error (MSE) as the distortion criterion. The
above-mentioned idea can be basically applied to any
video codec by introducing a texture analyzer at the
encoder side and a texture synthesizer at the decoder side.

The texture analyzer identifies detail-irrelevant texture
regions (water, sand ...), creates coarse masks
corresponding to these regions, and signals these masks as
side information to the decoder. The texture synthesizer
replaces the identified and signaled textures via inserting
synthetic textures.

For the texture analyzer, similarity criteria like
MPEG-7 descriptors [1],[2] can be used, instead of MSE
as coding distortion to describe detail-irrelevant textures
as shown in [3]. Since the considered MPEG-7 descriptors
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evaluate overall similarity, the reproduced textures
typically show different details as the original ones. These
deviations between original and synthetic textures are not
subjectively noticeable as long as the displayed spatial
accuracy of the textures remains unchanged and are also
much less annoying as if they were coded at a bit-rate
which is equivalent to the bit-rate of the side information
of the texture synthesizer. In [3], it is shown that
substantial bit-rate savings can be achieved using our
approach. The gains thereby increase with increasing
video quality. E.g., bit-rate savings of up to 19.4%
compared to an H.264/AVC video codec were measured
for the Flowergarden test sequence (CIF resolution, 30 Hz
progressive video and quantization parameter 16).

A similar wavelet-based analysis/synthesis video
coding approach was introduced by Yoon and Adelson [4]
and by Dumitras and Haskell [5]. The algorithms
presented in [4],[5] are optimized for textures with no or
very slow global motion, whereas no such constraint is
required for our system [3].

In this paper, we focus on improvements of the texture
synthesizer and the corresponding potentially subjective
disturbing spatial artifacts. It is shown that an automatic
detection of these artifacts can be achieved, which enables
online quality assessment of the partially synthesized
frames. In case of erroneous synthesis, the reference codec
can be selected as fallback alternative for coding the
corresponding macroblocks.

The remainder of the paper is organized as follows. In
Section 2, we present the texture synthesizer, while in
Section 3 the corresponding spatial artifact classes are
addressed. In Section 4, the automatic artifact detection
tool is presented. Finally, in Section 5 the experimental
results are shown.

2. TEXTURE SYNTHESIZER

The texture synthesizer considered in this paper was
designed for rigid objects. It is assumed that the frame-to-
frame displacement of the objects can be described using
the perspective motion model:

xX'=[(a, +ayx+a,y)/ (1+a,x+agy)]+x 1)
y’:[(az taxtagy)/ (1+ax+agy)]+y
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where (x’,y’) represent the warped coordinates of the
original sample which has coordinates (x,y). ai,...,ag are
the eight model parameters. Non-rigid textures like water
can not be handled with this implementation of the texture
synthesizer. However, a texture synthesizer for non-rigid
textures only was already proposed in [3].

The texture synthesizer warps the considered texture
from a given reference frame towards the texture region to
synthesize as illustrated in Figure 1.

Ref. frame

Current frame

Figure 1 — Texture synthesizer filling texture region
identified by texture analyzer using given reference frame

The detail-irrelevant texture region is thereby identified by
the texture analyzer. A motion parameter set as well as a
control parameter are required by the texture synthesizer
for each synthesizable texture region. The control
parameter indicates which reference frame to use to
synthesize the current texture region. The motion
parameters are necessary to transform the considered
sample coordinates from one frame to the other, as
explained above. Control and motion parameters are
provided by the texture analyzer.

3. SPATIAL ARTIFACT CLASSES

It is obvious that, given a correct texture analysis within
the selected detail-irrelevant regions, most spatial artifacts
will occur at the transitions from synthesized to original
textures in the form of false borders (cp. Figure 1). The
main causes of the above-mentioned artifacts can be
grouped into two classes:

e  Suboptimal motion estimation,

e  Texture region violation.

3.1. Suboptimal motion estimation

Suboptimal motion estimation occurs due to the
limitations of the perspective motion model or/and the
motion estimator [6],[7],[8] (cp. Figure 2).

The perspective motion model is suitable to describe
arbitrary rigid object motion, if the camera operation is
restricted to pure rotation and zoom. It is also suitable for
rigid motion of planar objects with arbitrary camera
operation. This assumption often holds approximately for
the short-term motion estimation done within our coding
scenario.

The considered motion model can not compensate
camera lens distortion, which is usually no significant
drawback for short-term motion estimation.

The perspective model leads to singularities, if the
denominators of (1) are zero, i.e. if the camera rotation
corresponds to £90°. The content of the current image can

not be projected onto the image plane of the selected
reference image, using perspective transformation, in these
cases. Due to extreme geometric distortion and to the fact
that a pure rotation around the focal point seldom occurs
in real world applications, the perspective model already
leads to modeling problems for angles smaller than +90°
or greater than —90° in practice.

Luminance is typically the observed quantity for
motion estimation. It is assumed that luminance changes
are exclusively due to motion. This approach is error
prone if lighting conditions change or noise occurs in the
video sequence. As a matter of fact, lighting variations and
noise may also yield luminance variations independently
of motion occurrence.

Occluded and uncovered regions also yield motion
estimation problems, as in such cases the motion field is
not defined.

3.2. Texture region violation

Texture region violation is given if parts of neighboring
textures are assigned to the considered detail-irrelevant
texture. This typically occurs at the borders of the detail-
irrelevant texture, which may yield the fact that samples
not belonging to the considered detail-irrelevant texture
are picked from the reference frame to synthesize the
corresponding texture (cp. Figure 2).

Figure 2 — Spatial artifacts due to suboptimal motion
estimation (left) and texture region violation (right)

These artifacts are usually subjectively very annoying in
case of significant dissimilarity between the detail-
irrelevant texture and the neighboring one, even if the
concerned image area is fairly small.

4. AUTOMATIC ARTIFACT DETECTION

The automatic detection of the spatial synthesis artifacts,
described in the previous section, is a key issue for
achieving online quality estimation capabilities. Online
quality assessment can in turn help to switch between the
reference codec and our texture analysis and synthesis,
thereby ensuring good video quality at the decoder output.

4.1. Data selection and generation

Since the erroneous image material obtained from the
selected test sequences was very limited, we reproduced
the observed artifacts using images from Corel Gallery™
(US version, 07/1998).

45 color images were selected according to the textures
they contained. We selected images with strongly (17
images), medium (15 images) and little (13 images)
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texturized areas. These judgments were made based on
subjective visual criteria.

For each image, artifacts corresponding to suboptimal
motion estimation and texture region violation were
simulated. The motion estimation artifact class was
subdivided in two sub-classes reflecting typical observed
artifacts. Each of the artifact (sub-)classes was subdivided
in very, medium and little pronounced. This resulted in
nine artifacts per image, which led to a database of 405
manipulated images. Both little pronounced artifacts
corresponding to suboptimal motion estimation were
subjectively not disturbing, so that we labeled the
corresponding 90 manipulated images “non-erroneous
synthesis”. The remaining 315 images were labeled
“erroneous synthesis”.

4.2. Edge detectors

Two relatively simple linear anisotropic edge detectors,
the Sobel and the Kirsch detector, are used for detecting
subjectively disturbing edges. They are selected because
they feature a single degree of freedom each, i.e. the
sensitivity threshold, for a given edge directionality. They
also differ in their respective motivations: The Kirsch edge
detector represents an effort to model the type of gray
level change near an edge, while the Sobel edge detector
approximates the gradient of local luminance [9].

Only the vertical and horizontal directionalities of the
detectors are used, since the synthesizable texture regions
are composed of square macroblocks [10]. For each edge
detector, the sensitivity threshold is varied and the optimal
threshold determined for the given data set. I.e. edges that
are not stronger than the selected threshold are ignored.

4.3. Quality measures

Reference edge masks showing the position of subjectively
annoying edges were manually generated. These masks
were then matched with the automatically generated edge
masks.

We define true positives (TP) as being the edge
samples detected in a given manipulated image which
correspond to a subjectively disturbing edge. False
positives (FP) are edge samples found in the
corresponding  original image without subjective
disturbing edges. Both true and false positives were
normalized with the total number of subjectively annoying
samples in the reference edge mask.

Two performance measures were derived from TP and
FP. The first measure is the “difference” measure, which is
basically the difference between TP and FP. This measure
allows the selection of a detector configuration w.r.t. TP
and FP. The optimal value of this measure is 1.0, i.e. only
true positives and no false positives are found. The smaller
the difference is the poorer the edge detector
configuration. Negative values of the difference measure
mean that FP is greater than TP, which, of course, is not a
good edge detection performance. We set negative values
of the difference measure to zero, so that the latter is
defined to lie in the interval [0,1].

The second measure corresponds to the ratio between
TP and FP. This measure allows us to determine the
critical ratio between TP and FP for the occurrence of
subjectively annoying edges.

4.4. Selection of optimal edge detector configuration

The measures presented in the previous section can be
used to determine the optimal edge detector configuration.
The first step thereby consists in finding the optimal
sensitivity threshold for each of the two considered edge
detectors (cp. Section 4.2.). The ideal detector has a TP
proportion of 1.0 and a FP proportion of 0.0. Thus the
mean TP proportion was maximized and the mean FP
proportion minimized for the 315 erroneous images. The
variance of TP (FP) towards lower (higher) values was
also minimized. These are, of course, contradictory
requirements in practice. Hence they were prioritized as
follows (decreasing relevance): mean FP, mean TP,
variance. This corresponds to a rather conservative
approach. The sensitivity threshold was varied with a step
width of 0.002 for each edge detector. The optimal
thresholds 0.022 and 0.058 were determined for Sobel and
Kirsch respectively. Note that the optimal sensitivity
threshold of a given edge detector depends on the degree
of texturization of the erroneous test material. We
considered the erroneous data irrespective of their content
in order to achieve a single optimal edge detector
configuration.
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Figure 3 — Box plot of difference measure for the Sobel
(1) and the Kirsch (2) edge detectors

Figure 3 depicts the difference measure values obtained
for the edge detectors Sobel and Kirsch by comparing the
erroneous data set and the corresponding original images.
It can be seen that Kirsch leads to better results than Sobel
with a mean difference measure value (median value,
horizontal line within the corresponding boxes) of 0.53 vs.
0.35. Less than 25% of the test images yield a difference
smaller than 0.35 for Kirsch (lower quartile corresponds to
lower bound of the box), whereas a difference higher than
0.64 is obtained for more than 25% of the test images
(upper quartile corresponds to upper bound of the box) for
the same edge detector. The whiskers drawn from the
lower (upper) quartile to the smallest (highest) difference
cover the range of the data.
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Figure 4 — Separability of non-erroneous (1) and
erroneous (2) images using the Kirsch edge detector

The separability of erroneous and non-erroneous images
(cp. Section 4.1.) using the optimal Kirsch configuration is
shown in Figure 4. The former is determined based on the
ratio between TP and FP (cp. Section 4.3.). Note that edge
samples found in non-erroneous images were considered
as TP here. It can be seen that both box plots overlap.

Tab. 2 shows the results obtained for three T settings. The
best FV rate (2%) was obtained for a ratio threshold (Tg)

of  very conservative 1.73 as expected.
Tr FR FV
1.73 0.49 0.02
2.5 0.19 0.11
4.5 0.05 0.39

Tr FR FV
10, 1.73[ [0.51, 1.0] 0
[1.73,2.5] [0.25, 0.51] 10, 0.04]
[2.5,4.5] 10, 0.25[ [0.04, 0.11]
[4.5, ® | 0 [0.11, 1.0]

Tab. 1 — False rejection (FR) vs. false validation (FV) of
partially synthesized images

The attempt to determine the critical ratio Ty for erroneous
synthesis yields a trade-off between false rejection (FR)
and false validation (FV). FR represents non-erroneous
synthesized frames that have been classified as being
erronecous by the edge detector, while FV specifies
erroneous frames classified as being non-erroneous. Tab. 1
shows some FR and FV values for given Ty intervals. It
can be seen that minimizing FV yields an increase of FR
and vice versa.

5. EXPERIMENTAL RESULTS

In our experiments, we use artifacts generated by the
texture synthesizer in nine test sequences (Canoe,
Flowergarden, Concrete, Football, Formula 1, Husky,
Raven, Stefan, Table Tennis ) as validation set for the
optimal Kirsch edge detector (cp. Section 4.4.). The
artifacts  were  generated  semi-automatically by
manipulating the segmentation masks (cp. Section 1)
manually so as to achieve artifacts of several severity
levels. A total of 80 erroneous frames is considered and all
artifact classes are represented. In addition to the
erroneous frames, 80 non-erroneous frames are used.
Erroneous as well as non-erroneous frames are coded
using an H.264/AVC video codec. The following set-up
was used for the H.264/AVC codec (Joint Model 2.1):
IBBBBBPBBBBBP..., i.e., five B frames, one reference
frame for each P frame, CABAC (entropy coding method),
rate distortion optimization, 30Hz progressive video at
CIF resolution. The quantization parameter was set to 16,
which corresponds to quite good video quality.

Tab. 2 — Results for three ratio threshold settings

The former is achieved at the price of a very high FR rate
(49%). For a ratio threshold of 4.5, the opposite scenario
can be observed. The best compromise obviously lies
between 1.73 and 2.5.

6. CONCLUSIONS

We have analyzed two methods for automatic detection of
texture synthesis artifacts in video sequences. Based on a
test set of 405 images it is found that the Kirsch edge
detector leads to significantly better artifact identification
rates than the Sobel edge detector. The Kirsch edge
detector is validated using 160 additional validation
frames and leads to an artifact identification rate of up to
89%. Further edge detectors will be explored in order to
maximize the achievable discrimination performance on
the test and validation sets.
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