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ABSTRACT

Today’s needs for low bitrates in data compression are res-
ponsible for MPEG and ITU family of video coding stan-
dards’ success. However, it is important to realize that such
standards involve lossy compression. This means a recons-
tructed image sequence will contain degradations relative to
the original, because information is discarded during com-
pression. Lower bitrate compression modes often introduce
block edge, ringing, blurring, color bleeding, or mosquito
noise effects. In this paper, we propose a Partial Differen-
tial Equations-based (PDE) method to reduce compression-
related artifacts on MPEG-4 color image sequences. The
main advantage of our approach is that both temporal and
spatial artifacts removal are performed at the same time, by
considering an image sequence as a 3D object. Although
PDE-based methods for still images restoration are beco-
ming quite popular, extensions to image sequences remain
rare, especially in color. This is also the purpose of this pa-
per to introduce one.

1. INTRODUCTION

MPEG and ITU family of standards emerged recently
as an important development in the field of video coding.
Because they addressed the growing demand for low bi-
trate compression, they quickly became popular among vi-
deo and broadcast professionals. However, it should be re-
called that such standards involve lossy compression, that
is the reconstructed image contains degradations relative to
the original, because information is discarded during com-
pression, as opposed to lossless compression, in which the
reconstructed image is identical to the original one. The lo-
wer the bitrate, the more pronounced the degradation. As an
example, MPEG low bitrate compressions are known to in-
troduce block edge effects (intensity discontinuities at the
boundaries of adjacent blocks), ringing artifacts (rippling
of high contrast edges), blurring (loss of spatial details in

areas such as textures and edges), color bleeding (blurring
effect in the color component of the image), and mosquito
noise (temporal fluctuations of luminance/chrominance le-
vels around high contrast edges or moving video objects).

In this paper, we propose a post-processing method, ba-
sed on Partial Differential Equations (PDE), to reduce these
artifacts. Such operation should result in a better looking
image sequence, as well as in an improvement in terms of
PSNR (Peak Signal to Noise Ratio). Compressed video en-
hancement techniques have already been proposed in lite-
rature [1, 2]. In [2], Choi introduces a method in which
both temporal and spatial correlations in a video sequence
are exploited. This method happens to be very interesting,
since most techniques usually involve frame-per-frame en-
hancement. However, he only gives results for grayscale se-
quences. Our algorithm also exploits both spatial and tem-
poral information, by considering the sequence as a 3D ob-
ject, and is able to deal with color images. This paper will
actually allow us to introduce a PDE-based method for image
sequence restoration, which is an emerging domain compa-
red to 2D image restoration, especially when it comes to
color videos. This method is based on Perona-Malik’s non-
linear filter [3], that we extend to 3D images, using our own
diffusion function, as well as a 3D extension of Di Zenzo’s
gradient for color images [4] to detect discontinuities.

In section 2 , we present the principles of PDE-based
still grayscale image denoising using a variational approach,
to focus on the case of color image sequence and introduce
our compression artifacts removal method in section 3. Fi-
nally, we will provide experimental results on MPEG-4 test
sequences in section 4.

2. PDE’s AND NONLINEAR FILTERING

We propose in this part a variational approach of noise
reduction in image processing. This approach, proposed by
Deriche and Faugeras [5], allows to unify most PDE-based
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methods in image enhancement and multi-scale analysis un-
der the same formalism, especially Perona and Malik’s [3].

2.1. Formulation

Let I(x, y) = I be a still, grayscale, image, which can
be represented by a function of Ω ⊂ R

2 → R which asso-
ciates with the pixel (x, y) ∈ R

2 its gray level I(x, y) ; Ω is
the support of the image. We suppose I is describing a real
scene from an observed (noisy) image I0(x, y) = I0. The
reconstruction of I from I0 can be written as the following
minimization problem :

E(I) =
∫
Ω

f(I, I0)dΩ

︸ ︷︷ ︸
term 1

+λ

∫
Ω

Φ(‖∇I‖)dΩ

︸ ︷︷ ︸
term 2

(1)

in which E(I) is the energy to minimize, f an error func-
tion, λ a constant, and Φ(.) : a regularization function to
be defined. Equation (1) is composed of two terms : a data-
fidelity term (term 1), which penalizes variations between
the original image and the restored one, and a regulariza-
tion term (term 2), which penalizes noise while preserving
the image’s edges. The idea is to perform heavy smoothing
in low gradient areas (homogeneous areas), and light smoo-
thing in high gradient areas (edges).

2.2. Solution

Conditions for minima of E(I) are given by the Euler-
Lagrange equation :

∇E(I) =
∂f(I, I0)

∂I
− λdiv(Φ′(‖∇I‖) ∇I

‖∇I‖ ) = 0 (2)

that leads to the following PDE (without taking into account
the data-fidelity term) :

∂I(x, y, t)
∂t

= div(Φ′(‖∇I‖) ∇I

‖∇I‖ ) (3)

= Φ′′(‖∇I‖)Iξξ +
Φ′(‖∇I‖)
‖∇I‖ Iηη (4)

with Iξξ and Iηη the second directional derivatives of I in
the gradient’s direction ξ and in its orthogonal direction η. t
is the time of diffusion, and controls the smoothing strength.
We can actually recognize in (3) Perona-Malik’s PDE [3],
Φ′(‖∇I‖)

‖∇I‖ being the diffusion function.

2.3. Conditions of stability

Deriche-Faugeras’ parabolic PDE (4) allows us to define
the diffusion process’ conditions of stability. These are :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ′′(0) ≥ 0 and Φ′(0) ≥ 0
lim‖∇I‖→0

Φ′(‖∇I‖)
‖∇I‖ = lim‖∇I‖→0 Φ′′(‖∇I‖) = Φ′′(0)

lim‖∇I‖→∞ Φ′′(‖∇I‖) = 0, lim‖∇I‖→∞
Φ′(‖∇I‖)

‖∇I‖ = 0

lim‖∇I‖→∞
Φ′′(‖∇I‖)
Φ′(‖∇I‖)

‖∇I‖
= 0

(5)
It means that smoothing is performed in all directions

(isotropic diffusion) for low gradient areas, while it is only
performed along the gradient’s orthogonal direction (aniso-
tropic diffusion) for high gradient areas. Several diffusion
functions Φ(.) can be found in literature [5].

3. COMPRESSION ARTIFACTS REMOVAL

Previous section introduced the principles of PDE-based
denoising in the case of a still grayscale image. In this sec-
tion, we propose an extension to color image sequences, and
apply it to compressed videos for artifacts removal. The use
of Partial Differential Equations for image sequences resto-
ration remains very rare, especially when it comes to color
images [6]. Our method consists in considering an image
sequence as a 3D object, and looking for local variations in
this object to perform anisotropic diffusion in both spatial
and temporal directions.

3.1. Extension to color image sequence

In section 2 , we considered the image as a still grayscale
image, defining I = I(x, y) as a R

2 → R application. In the
case of color image sequences, we now define a 3D vectorial
function �I(x, y, z) : R

3 → R
3, which associates with the

pixel (or voxel) (x, y, z) ∈ R
3 its color levels R(x, y, z),

G(x, y, z) and B(x, y, z) :

�I(x, y, z) =

⎡
⎣ I1(x, y, z)

I2(x, y, z)
I3(x, y, z)

⎤
⎦ =

⎡
⎣ R(x, y, z)

G(x, y, z)
B(x, y, z)

⎤
⎦ (6)

z being the temporal coordonate (not to be confused with t,
the time of diffusion).

Equation (3) can be easily extended from I (scalar, grays-
cale 2D image) to �I (vectorial, color 3D image) :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R(x, y, z, t) = div(
Φ′(‖∇�I‖)

‖∇�I‖ ∇R)

G(x, y, z, t) = div(
Φ′(‖∇�I‖)

‖∇�I‖ ∇G)

B(x, y, z, t) = div(
Φ′(‖∇�I‖)

‖∇�I‖ ∇B)

(7)
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Marginal approaches seem to be the easiest solution for
color image diffusion. They consist in processing a k-bands
multispectral image as k scalar images. Diffusion would
then be performed on each spectral band Ii using ‖∇Ii‖
as an edge detector. Alas, such method introduces false co-
lors, since diffusion directions can change from one spectral
band to another. We decided to use a common representa-
tion of the image’s discontinuities, to have common diffu-

sion directions for R, G, and B.
∥∥∥∇�I

∥∥∥ can be defined as

a multispectral 3D gradient, which is calculated using an
extension of Di Zenzo’s gradient for still color images [4].
Di Zenzo’s gradient norm is based on differential geome-
try of surfaces, and has already been successfully applied
for anisotropic diffusion of still color images. It consists in
defining a tensor gradient, associated with a vector field, to
look for local variations in the image. The extension of Di
Zenzo’s tensor to our 3D space can be written as follows :

∥∥∥d�I
∥∥∥2

=

⎡
⎣ dx

dy
dz

⎤
⎦

T

.

⎡
⎣ g11 g12 g13

g12 g22 g23

g13 g23 g33

⎤
⎦

︸ ︷︷ ︸
G

.

⎡
⎣ dx

dy
dz

⎤
⎦ (8)

with : gij =
3∑

k=1

∂Ik

∂xi
. ∂Ik

∂xj
(x1 = x, x2 = y, x3 = z)

G is defined as the multispectral tensor. It is a symme-
tric, positive semidefinite matrix, which highest eigenvalue
corresponds to the squared gradient norm.

3.2. Diffusion function

In [3], Perona-Malik use the following anisotropic dif-
fusion function in their PDE (3) :

D(
∥∥∥∇�I

∥∥∥) =
Φ′(

∥∥∥∇�I
∥∥∥)∥∥∥∇�I

∥∥∥ = exp(−(
∥∥∥∇�I

∥∥∥ /k)2) (9)

in which k is a threshold that defines the frontier between
low gradient (‖∇I‖ < k) and high gradient (‖∇I‖ > k)
areas. Alas, this threshold happens to be hard to define and
varies with the image to restore. Unlike Perona-Malik’s, our
diffusion function D(.) isn’t directly linked to ‖∇I‖, but
to a normalized version of it, thus allowing us to define a
threshold α, which values remain the same no matter what
image is being processed. We also decided to use a function
that only performs forward diffusion, since its only purpose
is denoising, not edge enhancement (2.3). D(.) is defined
as :

D(s) =
Φ′(s)

s
= (1 + s2).e−s (10)

with : s = α.
Max(‖∇�I‖−Min(‖∇�I‖)

V ar(‖∇�I‖)
.
∥∥∥∇�I

∥∥∥

Threshold α allows us to introduce an anisotropy level
for D(.). We can easily notice that for α = 0, D(s) equals
1, discarding s : in this case, the diffusion process turns into
pure isotropic diffusion.

3.3. Parameters estimation

Another difference between Perona-Malik’s method and
ours is the fact that instead of using a constant threshold, we
decide to make α evolve with time, from purely isotropic
diffusion (heavy denoising) to highly anisotropic diffusion
(softer denoising and better edge preservation). The algo-
rithmic implementation then requires the determination of
two parameters :

– N , the number of iterations (discrete equivalent to T ,
the total time of diffusion)

– α, which value evolves according to iteration n. We
rename it αn, with n ∈ [0, N − 1]

We are looking for an image quality criteria, in order to
determine optimal parameters αn and N by judging the res-
tored image quality. Many quality measures have been pro-
posed for that purpose, including psychovisual studies. We
decided to use the well-known Mean Square Error (MSE),
which main advantage is its simplicity. The parameters’ de-
termination can be written as a minimization problem :

α̂n = arg min
αn

⎛
⎜⎝

P−1∑
x=0

Q−1∑
y=0

R−1∑
z=0

3∑
i=1

(Ii(x,y,z,n)−I0i(x,y,z))2

3×P×Q×R

⎞
⎟⎠
(11)

for n ∈ [0, N −1], with P ×Q×R the size of the sequence.
As the diffusion process goes on, the MSE gets smaller,

indicating that the restored sequence is getting closer to the
original. αn values start from 0 (isotropic diffusion), and
increase as the number of iterations grows, so to minimize
the MSE at each iteration. N is the number of iterations
above which the MSE tends to be steady (experiments have
shown N barely exceeds 20).

The parameters’ determination is a pre-processing, that
occurs before the encoded image sequence is transmitted.
Once estimated, diffusion parameters are placed in the com-
pressed video file’s header, to be later extracted during de-
compression and used for post-processing.
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4. EXPERIMENTAL RESULTS

Figure 1 shows results obtained for the ”Claire” sequence
(352 × 288, 160 frames, 15 fps) encoded at 24 kb/s using
Microsoft MPEG-4 Visual Reference Software version 2
FDAM1-2.3-001213. We can notice visible enhancement
between the compressed sequence (Figure 1.a an 1.c) and
the restored one (Figure 1.b an 1.d) : blockiness and rin-
ging artifacts have been removed (mosquito noise as well,
although temporal artifacts can’t be observed on paper). The
results are summarized in Figure 1.e, where the PSNR va-
lues of the recovered frames are shown (as we already men-
tioned, there are better image quality measures than this
one, alas none seems to have been proposed as a freely avai-
lable software application).

(a) Compressed sequence (b) Restored sequence

(c) Edges of (a) (d) Edges of (b)

Restoration of the compressed "Claire" sequence

30
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31

31,5

32

32,5

33

1 21 41 61 81 101 121 141

Frame number

P
S

N
R

 (
d

B
)

Compressed sequence

Restored sequence

(e) PSNR of recovered frames

Fig. 1. Restoration of ”Claire” sequence

5. CONCLUSION

In this paper, we’ve presented a PDE-based color image
sequence restoration method, and used it in order to remove
spatial and temporal compression artifacts on low bitrate
videos. Extensions of Perona-Malik’s nonlinear filter and
Di Zenzo’s gradient for color images to a 3D space have
been proposed, in order to adapt them to color image se-
quences. We’ve also introduced a forward diffusion func-
tion, and a diffusion parameters estimation technique. The
main advantages of our method are its simplicity, the fact
that it includes a parameters’ estimation that allows it to
work a totally unsupervised way, and a low processing time
(less than 5 seconds for 1 iteration on a 352 × 288 pixels, 10
frames, color video1, knowing the complete restoration pro-
cess hardly requires more than 20 iterations). Results have
been shown on a MPEG-4 compressed test sequence. These
results may open up new perspectives, since we’ve only
focused on post-processing. Pre-processing diffusion may
also improve compression, by removing spurious noise and
other insignificant features from the original data.
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