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ABSTRACT 

Methods of reducing the complexity of the matching 
pursuits algorithm with minimal loss of fidelity when 
coding displaced frame difference (DFD) images in video 
compression are investigated. A full search using 2D basis 
functions is used as a benchmark. The use of separable 1D 
bases greatly reduces the complexity, and significant 
further reductions are achieved by using only a 1D inner 
product search to locate the atom position, followed by a 
further 1D inner product search in the opposite direction to 
identify the second 1D basis function. To avoid ignoring 
significant structures orthogonal to the search direction, it 
is proposed to alternate the initial search direction between 
horizontal and vertical scanning. This produces a modest 
increase in distortion compared to the full 2D search, with 
a complexity reduction in excess of an order of magnitude. 

1. INTRODUCTION 

The key contribution of this work is in evaluating low 
complexity alternatives for implementing the Matching 
Pursuits (MP) algorithm for video coding without 
unacceptable loss of fidelity. MP iteratively decomposes a 
signal into a series of atoms selected from an over-
complete set of non-orthogonal dictionary basis functions 
and was originally proposed for digital audio by Mallat 
and Zhang [1]. In image and video compression, MP has 
mainly found application in the coding of DFD images, 
first demonstrated by Neff and Zakhor [2]. Applied within 
a standard codec, such as H.263, it has been demonstrated 
to achieve significant improvements in fidelity [2]. 

MP is, however, very costly of computational 
resources. A full two-dimensional MP decomposition 
requires repeated inner product searches of all basis 
functions in the dictionary at each image position. At each 
step an “atom” specifying the position, sign, amplitude and 
basis function index is encoded, transmitted and subtracted 
from the image before the process repeats.  

Although the code of an atom costs many bits, MP 
succeeds because one atom specifies many pixels in the 
decoded image compared to DCT or wavelet transform 
coding [3]. 

Although MP is highly efficient in terms of coding 
performance, its computational cost remains prohibitive 
and the development of reduced complexity schemes is an 
area of emerging research interest. In [2] Neff and Zakhor 
addressed this problem by the use of separable Gabor 
basis functions and performing the full inner product 
search only in the 16 × 16 window with greatest energy. 
Moschetti et al [7] go further and simply select the pixel 
position in the DFD image with the highest energy as the 
point at which to perform a full 2D inner product search, 
an approach that is very computationally efficient but 
introduces significant additional distortion.  

Alternative work has addressed the problem of 
dictionary design, resulting in smaller dictionaries that can 
be efficiently constructed from elementary basis functions 
[4, 5]. More recently, the Schwarz inequality has been 
used to exclude a significant number of basis functions 
from the final inner product search, producing a 20%-35% 
reduction in the separable inner product calculations [6].  

In this paper, we investigate reduced complexity MP 
algorithms based on separable basis functions that offer a 
favourable trade-off between distortion and complexity. 
We show that using a 1D inner product to select the pixel 
position at which to perform an additional 1D search in the 
opposite direction greatly reduces the complexity with 
only a modest increase in distortion. Further, a novel 
Alternating 1D Search algorithm is demonstrated to have 
significantly better distortion performance than the 1D 
search with a complexity that is between 13 and 16 times 
less than that of the Full 2D separable search. 

2. REDUCED COMPLEXITY SEPARABLE MP 
ALGORITHMS 

The basic theory of matching pursuits is well known and 
can be found in the literature [1-5]. We base our 
discussion of the complexity of our new algorithms on an 
initialisation cost followed by the three-step per atom 
model of [5]: 
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Initialise compute a full set of inner products
Repeat 

1. Find atom. Full search or reduced 
complexity strategy.

2. Atom Update. Subtract quantized atom from 
image

3. Repair. Recompute required inner products 
only in atom footprint.

Until distortion or bit rate criterion met 

The Atom Update step contributes negligible cost and 
so is not considered in our calculations. Assuming that the 
Repair step uses the same algorithm as step 1, we first 
estimate the complexity of a full 2D separable and 
Maximum Energy algorithms, as these represent the two 
extremes of complexity in terms of the information used to 
select the location of the atoms. 

2.1. Full 2D separable inner product search 

Here we take the initialisation cost as the number of 
multiply and accumulate operations required for a 
separable 2D inner product between the entire DFD image 
and all normalized 2D basis functions: 

Init2DSep = p(b w + b2 w ) (1)

where I = initialisation complexity, w = atom width and 
height (assuming all atoms have the same width and 
height), p = number of pixels in the region and b = number 
of 1D basis functions in the dictionary. 

The Find Atom step requires a comparison between 
all basis functions at each pixel position giving a cost per 
atom of 

FindAtom2DSep = p × b2.   (2)

For the Repair step the inner product must be 
recomputed for an atom footprint of (2w –2)2 pixels:  

Repair2DSep = (2w –2)2(b w + b2 w). (3) 

2.2. Maximum energy search 

Using the energy in the DFD image requires just 1 
multiplication per pixel for initialisation: 

InitEnergy = p.    (4)

Find Atom requires p comparisons to determine the 
pixel position with the greatest energy at which all inner 
products must be evaluated, giving 

FindAtomEnergy = p + b2×w2   (5)

and a repair cost of  

RepairEnergy = (2w –2)2.   (6) 

2.3. Reduced complexity 1D search

The Full 2D separable MP algorithm requires all inner 
products to be evaluated in order to find the position to 
place each basis function and no additional calculations to 
determine which basis function to use. At the other 
extreme, the maximum energy method needs no inner 
products to find the position and an inner product with all 
basis functions to select which to use. 

In this work we use a 1D inner product between a 1D 
scan of the DFD image and the set of normalized 1D basis 
functions to determine the atom position. The 1D 
initialisation cost is then 

Init1D = p ×  b w .   (7)

The Find Atom step requires p × b comparisons to 
determine the pixel position and the first basis function. 
Rather than evaluating the inner products of all dictionary 
entries containing this first basis function, the second basis 
function is found by a further 1D inner product search in 
the orthogonal direction, giving a total (reduced) cost of 

FindAtom1D = p× b + b × w = b(p + w).  (8)

We have found that finding the second basis function 
using (8) produces a virtually identical performance to a 
Full 2D inner product search at the pixel position with all 
2D basis functions containing the first basis but with 
reduced complexity. 

The repair cost is also reduced by a factor of b in 
comparison to the full search 

Repair1D = (2w –2)2 bw.   (9)

2.4. Alternating 1D search

The final algorithm performs a 1D inner product search, as 
described in Section 2.3, in alternating horizontal and 
vertical directions to identify the atom position and first 
1D basis function, followed by a 1D search in the opposite 
direction. This is intended to capture significant structures 
in horizontal and vertical directions, thus improving the 
convergence. Compared to the 1D search, the 
Initialisation and Repair complexity are doubled while the 
Find Atom is unchanged, giving: 

InitAlt1D =2( p ×  b w),   (10) 

FindAtomAlt1D = b(p + w),  (11) 
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Initialise Find Atom Repair 

Full 2D 8.52+e08 4.06+e07α  1.21+e07α
1D 4.06+e07 2.03+e06α  5.78+e05α

Alt. 1D 8.11+e07 2.03+e06α  1.16+e06α
Energy 1.01+e05 2.61+e05α  1.44+e03α

Table 1: Theoretical complexity of the algorithm coding 
α atoms using a codebook of size 20 on a CIF image. 

RepairAlt1D =2 × (2w –2)2 bw.  (12)

2.5. Complexity Comparison

To give a feeling for the relative complexities of the 
searching options when dealing with a real image, the 
complexities for a full CIF image (352 x 288 pixels) coded 
with a separable dictionary of 20 1D basis functions of 
width 20 pixels are given in Table 1. In practice this is a 
realistic set of values, except that the widths of the basis 
functions will normally vary. 

Although the initialisation costs are generally higher 
than the Find Atom and Repair steps, in practice thousands 
of atoms are coded and the per atom cost of the two latter 
stages will dominate the overall complexity. 

3. CODING EXPERIMENTS

To estimate the distortion introduced by finding sub-
optimal atoms at sub-optimal locations, CIF-sized DFD 
frames from the Stefan, Foreman and Mobile sequences 
were encoded using 1 to 2000 atoms by each method and 
the PSNR was recorded. The basis dictionary and 
quantisation method used were those of [2] and the bit cost 
per atom is assumed to be constant. Figure 1 shows the 
additional distortion produced by the 1D Search, 
Alternating 1D Search and Maximum Energy search, when 
compared to the optimal Full 2D search.  

The Maximum Energy Search introduces the greatest 
distortion for all sequences and for realistic numbers of 
atoms (>500) has a degradation well in excess of 1 dB. 
Although the 1D search performs better, it still has a loss 
of 0.5 dB from 500 atoms upwards, increasing with the 
number of atoms for 2 of the 3 sequences. The distortion 
performance of the Alternating 1D search is significantly 
better than the other search methods. On the Mobile 
sequence its distortion is within 0.2 dB of the optimal Full 
2D search. For the Foreman sequence the distortion peaks 
at –0.56 dB at 400 atoms but then improves to within 0.2 
dB for 1400 atoms upwards. The distortion is worst on the 
Stefan sequence but still considerably better than the two 
other sub-optimal search strategies.  
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(a) Stefan frame 24 predicted from frame21 
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(b) Foreman frame 18 predicted from frame 15 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

No.of Atoms

D
−

P
S

N
R

1D
MaxEnergy
Alt1D

(c) Mobile frame 18 predicted from frame 15 

Figure 1. PSNR loss relative to Full 2D searching for DFD 
frames from 3 CIF sequences. The Full 2D search is 0dB 
and the graphs show the loss in fidelity using other 
methods. 
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 Stefan Foreman Mobile 
Full2D 1730 427 5970 
Alt1D 1990 537 6182 
1D 2187 597 7310 
Max Energy 2616 851 8120 

Table 2: Number of atoms required to achieve a PSNR of 
31dB for Stefan, Foreman and Mobile sequences. 

Figure 2 shows the complexity of the 4 search 
methods, calculated using the values in Table 1 and the 
number of atoms required by each search method to reach 
a distortion of 31 dB (tabulated in Table 2) for the same 3 
sequences as before. For clarity, the computational 
complexity is plotted on a log scale. 

As expected the Full 2D search is the most complex 
and requires the fewest atoms. The Maximum Energy 
search is the least complex but requires between 36% and 
99% more atoms than the Full 2D search, reducing its 
complexity advantage and giving lower compression. 

The complexity of the 1D Search is only slightly less 
than that of the Alternating 1D Search. Despite having 
lower initialisation and repair costs it requires more atoms 
to reach the requisite distortion at lower compression. 

4. DISCUSSION AND CONCLUSIONS

We have assumed throughout that the cost of sending 2D 
atoms by our various methods is similar. This has enabled 
us to carry out complexity and PSNR comparisons by 
coding by each method to the same number of atoms. 

Several alternatives for reduced complexity have been 
investigated involving sub-optimal searching strategies. 
The novel Alternating 1D Search has been shown to offer 
a significant reduction in complexity while still producing 
distortion performance that is tolerably close to that of a 
full 2D search. In implementing a practical MP coder, this 
would be our method of choice. 

We have also investigated a double 1D search in 
which the maximum of a 1D horizontal and vertical search 
is used to locate the atom position, followed by a 1D 
search in the other direction. However, the PSNR 
performance of this Double 1D search was only marginally 
better than Alternating 1D Search and it would require the 
search direction to be communicated to the decoder. This 
would violate the assumption of equivalent bit cost per 
atom, so in practice its distortion at a given bit rate is 
expected to be higher than the Alternating 1D. 

The sub optimal searching and atom selection 
approach presented is conceptually different from that of 
Neff and Zakhor [2] and therefore the two techniques 
could be combined to produce further savings in 
complexity, albeit with additional distortion.  
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Figure 2. Search Algorithm Complexity to Reach a 
Distortion of 31 dB. The Alt 1D and 1D methods have 
similar complexity at this PSNR, but Table 2 shows that 
the 1D would require 10% to 18% more atoms.. 
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