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ABSTRACT

Both visual sensitivity and spatial selectivity determine the
overall visibility threshold at each pixel in an image, ac-
cording to the physiological and psychological evidence to-
wards the human vision system (HVS). Visual sensitivity
can be decided by an existing estimator for Just-Noticeable-
Distortion (JND). In this paper, a computational model is
proposed for incorporating a selectivity measure into the
JND profile so that more effective noise shaping is possi-
ble in various applications. Experimental results with noise-
embedded video sequences confirm that introduction of spa-
tial selectivity enhances the performance of JND profile used
in noise shaping.

1. INTRODUCTION

Noise-shaping refers to re-allocating the inevitable noise or
distortion into some domains or areas so that the resultant
visual variation is the least noticeable to human eyes, in the
applications like visual compression, communication, dis-
playing, and data hiding. Therefore, visual sensitivity is
an important issue in the relevant research [1, 2, 3]. Just-
Noticeable-Distortion (JND) determines the visibility thresh-
olds in pixels [4, 5] or subbands [6, 7]. Approximately, a
JND threshold can be regarded as the inverse of visual sen-
sitivity.

Another factor affecting our perception towards visual
signal is the human vision system (HVS)’s spatial selec-
tivity (or visual attention) [8, 9, 10] on contents in visual
field. Spatial selectivity can enhance or reduce the actual
visual sensitivity and consequently JND profiles need to be
adjusted inside and outside of fovea area.

In this paper, we will exploit the methodology to com-
bine visual sensitivity and spatial selectivity for better noise
shaping related applications. In Section [?], an analysis of
the relationship between spatial selectivity and visual sensi-
tivity is given, based upon the HVS’ mechanisms. A com-
putational model is then discussed to modulate the JND pro-
file with spatial selectivity measures, in Section 3. Experi-
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Fig. 1. Flowchart of the spatial selectivity modulated JND
profile model.

mental results are given in Section 4 for noise shaping, and
the conclusions are given in Section 5.

2. VISUAL SENSITIVITY AND SPATIAL
SELECTIVITY

Both visual sensitivity and spatial selectivity result from the
biological mechanisms of the HVS. The affecting factors
include: 1) distance between eyes and display, 2) optical
property of eyes, 3) the structure of neurons lay behind pho-
toreceptor cells (ganglion cells), 4) the noise introduced in
vision path, 5) optic-electric properties of all kinds of pho-
toreceptor cells on retina, and 6) fixation position and den-
sity distribution of photoreceptor cells on retina [11]. Visual
sensitivity is affected mainly by 1) ∼ 5) [12, 13], while spa-
tial selectivity is determined by 6).

The HVS perception has the highest spatial resolution
and sensitivity at the point of fixation (fovea area) and the
resolution/sensitivity decreases dramatically with increas-
ing eccentricity. A large number of recent psychological
researches reveal that visual attention is the fundamental
reason of the enhancement of visual resolution and sensi-
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Fig. 2. Diagram of mapping function from PQSL value to
modulation value.

tivity in attentional area [8, 9, 10]. Visual attention and eye
fixation position/movement in visual field is highly corre-
lated; the eye fixation always follows the shift of visual at-
tention in visual field to capture more useful information,
although they don’t have physical link [14]. Some psycho-
logical researches on motion perception further reveal that
contrast sensitivity of surrounding areas is suppressed by
motion of fixative objects [15]. Generally, fast motion has a
stronger suppression on visual sensitivity, and the suppres-
sion by slow motion is quite weak. From another point of
view, the perception of fast motion requires a large amount
of brain’s computational resources.

Visual sensitivity indicates the HVS’ threshold with fix-
ation, and spatial selectivity gives the extent of visual atten-
tion. For optimal noise shaping, these two have to be con-
sidered simultaneously. In our earlier work [16, 17], spatial
selectivity has been estimated for perceptual quality evalu-
ation purpose, with consideration of various salient visual
features (e.g., motion, color, luminance, texture); the JND
thresholds can be derived for each pixel as the compound
effect of luminance adaption and texture masking [5] (as an
improved model of [4]). In the next section, the methodol-
ogy is to be investigated for the spatial selectivity modulated
JND profile.

3. COMPUTATIONAL MODEL OF SPATIAL
SELECTIVITY MODULATED JND PROFILE

Flowchart of the computational model is given in Figure 1.
The spatial selectivity estimation part is adopted from [17],
and the JND model is adopted from [5].

The JND for a pixel can be expressed as [5]:

Θs = Θl + Θc − Clc · min (Θl,Θc) (1)

where Θs is the spatial threshold, Θl is the threshold caused
by luminance adaptation, Θc is the threshold caused by tex-
ture masking, and Clc is the coupling factor. With temporal
masking, the final JND is obtained as :

Θ = Θs · Θt (2)

(a) (b)

(c) (d)

(c) (d)

(e) (f)

Fig. 3. Embedding noise into the 30th frame of video ’Fore-
man’: (a) original image; (b) spatial selectivity measure P ;
(c) ΘP generated by proposed model; (d) Θ generated by
Yang’s model; (e) noise-embedded image with ΘP (x, y, t),
α = 1, PSNR = 32.27dB; (f) noise-embedded image
with Θ(x, y, t), α = 1, PSNR = 32.84dB; (g) noise-
embedded image with ΘP (x, y, t), α > 1, PSNR =
24.61dB; and (h) noise-embedded image with Θ(x, y, t),
α > 1, PSNR = 25.18dB;
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where Θt is the re-correction function for temporal mask-
ing. The advantages of Yang’s model are: 1) low complex-
ity; 2) better accuracy; 3) pixel based JND profile; and 3) in
Y CbCr domain.

The proposed spatial selectivity modulated JND profile
can be expressed as:

ΘP
s = ΘP

l + ΘP
c − CP

lc · min (ΘP
l ,ΘP

c ) (3)

ΘP = ΘP
s · ΘP

t (4)

where ΘP , ΘP
s ,ΘP

t , ΘP
l , ΘP

c and CP
lc denote the modulated

versions of the variables defined earlier in this section.
The modulation functions can be expressed as:

ΘP
t (x, y) = Θt(x, y) · fP

t (P (x, y)) (5)

ΘP
l (x, y) = Θl(x, y) · fP

l (P (x, y)) (6)

ΘP
c (x, y) = Θc(x, y) · fP

c (P (x, y)) (7)

CP
lc (x, y) = Clc(x, y) · fP

lc (P (x, y)) (8)

where P (x, y) is the estimated spatial selectivity measure.
fP

t (), fP
l (), fP

c () and fP
lc () are the corresponding modula-

tion functions, as exemplified in Figure 2. In general, with
higher spatial selectivity measure, fP

t (), fP
l () and fP

c ()
take lower values, and fP

lc () takes higher value. The actual
parameters of these modulation functions may be adjusted.

4. EXPERIMENTAL RESULTS

To evaluate the proposed computational model for noise
shaping, a noise embedding scheme is used. The embed
noise for the images in our tests is obtained by ΘP (x, y, t):

d(x, y, t) = α · Θo(x, y, t) · sgn(random()) (9)

where Θo can be ΘP (x, y, t) or Θ(x, y, t); α ≤ 1 for per-
ceptually lossless noise (if the visibility threshold is cor-
rectly determined), and α > 1 for perceptually lossy noise;
random() is a random noise generator, and it is used here
just to control the way to embed noise: addition or subtrac-
tion.

Such a noise embedding scheme can be used to exam-
ine the performance of ΘP (x, y, t) against Θ(x, y, t) (or
any other relevant models for visibility threshold determi-
nation). A more accurate JND model should derive a noise
embedded image (or video) with better visual quality under
a same level of noise (controlled by α), because it is capable
of shaping more noise onto the less perceptually significant
regions in the image.

Figure 3 shows the experimental result on video clip

’Foreman’. Figure 3(a) is the original 30th frame, Figure 3(b)
is the estimated spatial selectivity measure with the scheme
devised in [16, 17]. As can be seen, the human face and the

(a) (c)

(b) (d)

Fig. 4. Closer comparison for the region with the highest
selectivity of Figure 3: (a) details of Figure 3(e); (b) details
of Figure 3(f); (c) details of Figure 3(g); and (d) details of
Figure 3(h);

helmet have been correctly identified as the areas with high
selectivity (visual attention). Skin color and relative motion
are the main reasons for the face area to be identified as
the region with the highest selectivity by the said detection
scheme. As for the helmet area, relative motion and the gra-
dient of spatial selectivity makes it the region with second
highest selectivity in the image. Such salient regions have
been confirmed by human observation by different subjects.
Figure 3(c) is the JND profile ΘP generated by proposed
spatial selectivity modulated JND profile model. The upper
half is the JND profile on Y channel, the lower left part is on
Cb channel, and the lower left part is on Cr channel. They
are scaled to fit in this paper. Figure 3(d) is the JND profile
Θ generated by Yang’s model.

Figure 3(e)(f) and (g)(h) are two pairs of comparison
between ΘP (x, y, t) and Θ(x, y, t), with very similar resul-
tant PSNR. Detailed comparison of them on the highest-
selectivity region are shown in Figure 4 for better appre-
ciation. The pair as shown in Figure 3(e)(f) is with simi-
lar PSNR values around 32 dB, and the subjective distor-
tion in Figure 3(e) is almost not noticeable in comparison
with original frame; For the pair in Figure 3(g)(h), the over-
all subjective quality of the video associated with the pro-
posed model (ΘP (x, y, t)) is better than that associated with
Θ(x, y, t). The reason is, as aforementioned, that more
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noise is allocated to the areas with low spatial selectivity
values under the guidance of ΘP (x, y, t). Experimental re-
sults on other video clips, which are provided for down-
load in [18], also confirms that spatial selectivity-modulated
JND model improves overall perceptual quality of the noise-
embedded video.

5. CONCLUSIONS

In this paper, the physiological and psychological evidence
is firstly introduced towards the visual sensitivity and spatial
selectivity in the human vision system (HVS). The overall
visibility threshold at each pixel in an image is affected by
both the visual sensitivity and spatial selectivity. In the cur-
rent estimators for Just-Noticeable-Distortion (JND), spatial
selectivity (mainly luminance adaptation and texture mask-
ing with the pixel-based approaches) is usually considered.
We devise a computational model for incorporating a spa-
tial selectivity measure into the JND profile so that more
effective noise shaping is possible in various applications.
Experimental results with noise-embedded video sequences
confirm that introduction of visual sensitivity enhances the
performance of JND profile used in noise shaping.

The benefits of a more accurate visibility threshold de-
termination process can be translated into resource (compu-
tation, bitrate, etc.) saving in image/video compression, and
performance (e.g., resultant visual quality) enhancement in
both image/video compression and visual data hiding (such
as watermarking).

6. REFERENCES

[1] Hector Yee, Sumanta Pattanaik, and Donald P. Greenberg,
“Spatiotemporal sensitivity and visual attention for efficient
rendering of dynamic environments,” in ACM Transactions
on Graphics, pp. 39–65. ACM Press, 2001.

[2] Shyh shiaw Kuo and J. D. Johnston, “Spatial noise shaping
based on human visual sensitivity and its application to im-
age coding,” IEEE Transactions on Image Processing, vol.
11, no. 5, pp. 509 –517, May 2002.

[3] S. A. Karunasekera and N. G. Kingsbury, “A distortion mea-
sure for blocking artifacts in image based on human visual
sensitivity,” IEEE Transaction Image Processing, vol. 4, no.
6, pp. 713–724, 1995.

[4] C. H. Chou and Y. C. Li, “A perceptually tuned subband im-
age coder based on the measure of just-noticeable-distortion
profile,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 5, no. 6, pp. 467–476, Dec. 1995.

[5] X. K. Yang, W. S. Lin, Z. K. Lu, E. P. Ong, , and S. S. Yao,
“Just-noticeable-distortion profile with nonlinear additivity
model for perceptual masking in color images,” in Proceed-
ings of ICASSP’2003, Hong kong, April 2003, vol. 3, pp. 609
– 612.

[6] A. J. Ahumada and Heidi A. Peterson, “Luminance-model-
based dct quantization for color image compression,” in
SPIE proceedings of Human Vision, Visual Processing, and
Digital Display III, 1992, vol. 1666, pp. 365–374.

[7] Andrew B. Watson, “Dctune: A technique for visual opti-
mization of dct quantization matrices for individual images,”
in Society for Information Display Digest of Technical Pa-
pers XXIV, 1993, pp. 946–949.

[8] Harold L. Hawkins, Steven A. Hillyard, Steven J.
Luckand Mustapha Mouloua, Cathryn J. Downing, and Don-
ald P. Woodward, “Visual attention modulates signal de-
tectability,” Journal of Experimental Psychology: Human
Perception and Performance, vol. 16, no. 4, pp. 802–811,
November 1990.

[9] M. Carrasco, C. Penpeci-Talgar, and M. Eckstein, “Spatial
covert attention increases contrast sensitivity across the csf:
support for signal enhancement,” Vision Research, vol. 40,
no. 10-12, pp. 1203 – 1215, 2000.

[10] Harriet A. Allen and Tim Ledgeway, “Attentional modula-
tion of threshold sensitivity to first-order motion and second-
order motion patterns,” Vision Research, vol. 43, no. 27, pp.
2927 – 2936, December 2003.

[11] James W. Kalat, Biological psychology (7th ed.),
Brooks/Cole Publishing, New York, 2001.

[12] J. L. Mannos and D. J. Sakrison, “The effects of a visual
fidelity criterion on the encoding of images,” IEEE Trans-
actions on Information Theory, vol. 20, no. 4, pp. 525–535,
July 1974.

[13] P. G. J. Barten, Contrast Sensitivity of the Human Eye and
Its Effects on Image Quality, SPIE Press, Bellingham, WA,
1999.

[14] M. M. Chun and J. M. Wolfe, “Visual attention,” in Black-
well Handbook of Perception, B. Goldstein, Ed., pp. 272–
310. Blackwell Publishers Ltd., Oxford, UK, 2001.

[15] T. Takeuchi and K. K. De Valois, “Modulation of perceived
contrast by a moving surround,” Vision Research, vol. 40,
no. 20, pp. 2697 – 2709, Sept. 2000.

[16] Z. K. Lu, W. Lin, E. Ong, S. Yao, and X. K. Yang,
“Perceptual-quality significance map (pqsm) and its applica-
tion on video quality distortion metrics,” in Proceedings of
ICASSP’2003, Hong Kong, April 2003, vol. 3, pp. 617–620.

[17] Z. K. Lu, W. Lin, X. K. Yang, E. Ong, and S. Yao, “Pqsm
based rf and nr video quality metrics,” in SPIE Proceedings
of VCIP’2003, Lugano, Switzerland, July 2003, vol. 5150,
pp. 633–640.

[18] “Final report from the video quality expert group on the
validation of objective models of video quality assess-
ment,” Tech. Rep., VQEG (Video Quality Expert Group),
http://www.vqeg.org, March 2000.

III - 708

➡ ➠


