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ABSTRACT

A new coding scheme for lossy-to-lossless compression of
volumetric data using three-dimensional packet wavelet
transform is presented. The need of unitary transform via the
integer lifting scheme and the performance comparison of
different integer filter kernels is discussed. A state-of-the-art
coder, Set Partitioning In Hierarchical Trees (SPIHT), is
considered and modified in order to adapt its tree-structure to the
3D packet wavelet structure defined. The algorithm is
extensively tested and shows very good performance, both for
lossy and lossless coding.

1. INTRODUCTION

Volumetric image compression is highly desirable in the
scientific and medical field. Given the nature of the data and all
possible applications, a coding scheme should offer various
features; progressive data transmission, or scalability, region of
interest (ROI) coding capability and random access to the data
volume or part of it are just three examples of useful features.
Another important requirement is the capability of up-to-lossless
coding. In the case of medical imaging, lossless or near-lossless
compression is often mandatory, while lossy compression is
accepted for fast browsing or representation purpose. In fact,
discarding of even small details might result in the loss of
important information with severe diagnosis faults. A good
compression scheme should then offer a reasonable trade-off
between rate-distortion performance and the various features
described above.

Several works have addressed the problem of lossy-to-
lossless coding of volumetric data with integer wavelet
transforms. Xiong et al. [1] proposed a modified version of 3D
SPIHT and 3D ESCOT with the introduction of packet wavelet
decomposition and the study of context modeling. Schelkens et
al. [2] gave an overview of several techniques and proposed a
new method based on quad-tree and block-based coding. They
also provided a new 3D DCT-based scheme. Integer wavelet
transforms for 3D compression are further investigated by Bilgin
et al. [3], who introduced a scheme based on 3D zero-tree
coding and Kim et al. [4], who employed a slice-based
subdivision of the volumetric image and tested several integer
wavelet kernels together with the 3D SPIHT algorithm.

Other works try to optimize the compression through object-
based methods. This is generally done through preliminary
segmentation, aimed at extracting useful information and discard
of the background. Example of such approaches is the work from
Menegaz et al. [5]. Visualization-oriented compression is

considered in other studies. Bajaj et al. [6] adopted a lossy
compression scheme combined with a technique to weight voxel
values according to their importance for visualization. Finally,
fast random access was addressed by Nguyen et al. and Ihm et
al. in [7] and [8] respectively.

This work proposes a new lossy to lossless volumetric coding
scheme (3D-SPIHTp hereafter) based on packet integer wavelet
transform and SPIHT [9]. In particular, a custom SPIHT coder is
implemented in order to comply with the chosen decomposition
structure

The paper is structured as follows. In section 2 the
background of this research is briefly described. The proposed
algorithm is presented in section 3. In section 4 the results are
shown for different datasets and modalities. Finally, in section 5
are the conclusions.

2. BACKGROUND

2.1. Lifting integer wavelet transform
Discrete wavelet transform (DWT) is widely used in signal

processing. It relies on the property of compacting most of the
signal energy in a few relevant coefficients and defining a larger
number of “detail” coefficients for better approximation. The
lifting scheme was presented by Sweldens [10, 11] to allow for
an efficient implementation of the discrete wavelet transform,
with perfect reconstruction granted by the structure of the
scheme itself. Moreover, an integer transformation can be
obtained through the lifting scheme by rounding each filter
output to the nearest integer. Such transform conspicuously
reduces the number of arithmetic operations compared to the
filter-bank implementation and its structure guarantees full
reversibility, regardless of the filter used. As a main drawback, it
has been observed that integer transforms offer worse energy
compaction performance compared to the real case.

For our research, the following filters have been considered
and evaluated: I(2,2), I(2,4), I(4,2), I(4,4), I(2+2,2) and S+P
with A, B and C parameter sets. In particular, the S+P filter was
introduced by Said and Pearlman as an improvement of the S
transform [12].

2.2. Packet wavelet transform
Several recursion schemes have been used for data

compression. The dyadic decomposition is certainly the most
famous; it relies on iterating the transformation stage on the low-
passed signal only. Other schemes are generally grouped in the
category of Packet Wavelets, defined as any one of a collection
of orthonormal transforms, each of which can be computed using
a simple modification of the pyramid algorithm for the DWT.
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Such scheme has been adopted, among other reasons
discussed in the following, in order to avoid potential problems
related to the scaling of the integer lifting scheme. While all
considered filter pairs meet the perfect reconstruction constraint,
they result in non-unitary transforms. For this reason, a non
integer scaling factor is generally needed after each filtering
operation. In the case of two dimensional signals, such as
conventional images, application of the transform produces
scaling factors of perfect integer precision. On the other hand,
three dimensional signals, such as volumetric data, cannot rely
on such property. By using the proper packet decomposition
scheme and an even number of decomposition levels, such
drawback can be avoided, as described in [1].

2.3. SPIHT
Set Partitioning In Hierarchical Trees was introduced by Said

and Pearlman [9] as a novel low-complexity and efficient image
coder. It allows for progressive transmission by sorting the
transform coefficients in order of significance and exploiting the
redundancy in the tree structure of the wavelet transformed
image. The algorithm relies on three linked lists, called list of
insignificant sets (LIS), list of insignificant pixels (LIP) and list
of significant pixels (LSP), which are dynamically modified
during execution. The method consists of two main steps called
sorting and refinement pass.

The main advantages of SPIHT are its efficiency, adaptability
and precise rate control. In fact, it is possible to stop the
coder/decoder at any time, in order to obtain one exact bitrate.
Alternatively, running the process until the last bitplane results
in lossless coding, provided the wavelet coefficients were not
subjected to quantization.

3. PROCESSING STRUCTURE

The codec infrastructure is discussed in the following
sections. The general coding scheme is described in section 3.1,
while issues related to the decomposition scheme; refinement
step and context entropy coding are covered in sections 3.2 to
3.4.

3.1. Coding scheme
The proposed volumetric coder adopts the general scheme for

transform-based coders. The input volumetric data can be
initially tiled in GOS (Group Of Slices) or blocks, so that each
tile is considered independently.

Each tile is further transformed by the 3D integer lifting
wavelet transform described in section 2.1 and 2.2. The
separable transform is first applied along the z axis (z or inter-
slice dimension) with the packet wavelet decomposition
illustrated in section 2.1. The dyadic transform is then applied to
each slice (xy or intra-slice dimension). Thanks to this scheme, a
different number of decomposition levels is applicable to the
inter- and intra-slice transform. At the same time, we can choose
among the integer filters referred in 2.1 to be applied along z or
xy independently. Such feature is useful to choose the best
combination of filter type and decomposition levels. In fact,
directional anisotropy implies that voxel correlation is generally
greater inside each slice than between slices, allowing for better
intra-slice redundancy exploitation. For such reason, it is
reasonable to adopt integer filters of smaller size and a smaller
number of decomposition levels for inter-slice dimension. In

brief, besides offering the integer scaling capability discussed in
section 2.2, the packet transform consents to avoid the
limitations of dyadic decomposition, which implies symmetry
even when such property is not granted.

Each transformed tile is then passed to the 3D-SPIHTp core.
This block provides scalable data redundancy exploitation by
decomposition of the transformed tile into hierarchical tree. The
main part is an extension of the SPIHT algorithm to 3D data that
implements the packet decomposition hierarchy. Further context
entropy coding can be implemented inside the core itself and is
discussed in section 3.4.

The decoding process simply follows the encoding in reverse
order; 3d-SPIHTp decoder, inverse integer lifting filters and
block composer are provided in order to perform the full
decoding stage.

3.2. 3D packet decomposition
In order to exploit the same packet structure of the wavelet

transform, the SPIHT coder must be accurately modified and
integrated. While intra-slice decomposition follows the
conventional dyadic structure, inter-slice samples are not related
by a factor 2 scaling. In particular, while the highest level
subband, LLN, has only one correspondent plane in each other
subband of same level, LHN, HLN and HHN, each of these can be
considered parent of 4 other planes at the corresponding subband
at N-1 level (Fig. 1).
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Fig. 1. Sample decomposition structure for the 3D-SPIHTp codec.

This rule becomes regular after the N-1 level, so that each
plane of a certain subband is the parent of 4 other planes at the
corresponding subband at the lower decomposition level. This
structural choice allows for the exploration of the whole volume
with correct hierarchical dependence. In all cases, child planes
are retrieved with a scaling factor and a shifting coefficient,
instead of a simple scaling of 2 as for dyadic decomposition

In the SPIHT algorithm the structural relation is evidenced by
information of the LIP and LSP, with the definition of two types
of sets: set with insignificant descendants (A-sets) and set with
insignificant descendant of offspring (B-sets). In order to exploit
the previously described structure the coder has been modified
with the introduction of four new set types. Types X and x
designate root sets for subbands inter-slice decomposition at the
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highest decomposition level, while Z and z represent sets for
subbands decomposition along the z axis at lower decomposition
levels. With capital or lower-case letter we indicate the
corresponding set with insignificant descendants or insignificant
descendant of offspring respectively, as for A and B sets.

3.3. Refinement pass
In the wavelet decomposition, each subband coefficient is

scaled according to its spatial location to obtain a unitary
transform. Given the chosen decomposition structure,
multiplicative scaling factors are always powers of 2. Such
operation is equivalent to bit-shifting the coefficients.

During the refinement pass, which is performed after all sets
and insignificant voxels have been tested for significance in
comparison with a certain bit-plane n, coefficients belonging to
the LSP are refined by outputting their nth bits. Consequently, all
coefficients belonging to subbands that have been scaled by a
factor of 2 or greater can produce irrelevant output. In lossless
compression, for instance, each scaled coefficient produces an
irrelevant output bit each time it is compared with a threshold
lower than its scaling factor.

In order to solve such problem, a simple conditional scheme
can be added to the co-decoder; location of each coefficient
together with dataset size, decomposition levels and current bit-
plane must be considered to decide for that element’s further
processing.

3.4. Context entropy coding
The 3D-SPIHTp coder is able to exploit spatial and

frequency redundancy of the wavelet compressed volume while
ordering its hierarchical structure to provide a fully scalable
bitrate. However, the output produced by each coding stage still
presents a certain level of correlation. In order to increase the
performance, additional entropy context coding can be applied.
In particular, the output deriving from the processing of A sets
during the sorting pass was revised, which constitutes 50% of
the coded stream on average. Each time an A set is considered
significant, a significance output bit is produced for each of its
four offspring. Consecutively, each time one of these is found
significant, a corresponding sign bit is produced. This leads to
81 possible symbols of different length.

It has been noted that smaller symbol length does not always
correspond to higher probability. In particular, sets with one
significant offspring are more probable than sets with no
significant offspring, which are coded with fewer bits. At the
same time coefficient sign showed a certain correlation
depending on the chosen wavelet filter. Finally, it has been noted

that almost 60% of occurrences is provided by 10 symbols only.
To increase performance, a simple adaptive Huffman coder

has been adopted. As a result, the A-set output decreased by an
average factor of 11%, resulting in a final gain of approximately
5%. Such figures can be further increased with the
implementation of more sophisticated techniques and the
extension of such considerations to other sources of output.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of our method we
consider the same 8bit CT and MR volumetric dataset used in
[1] and [3] for easy comparison. The images present different
techniques, sizes, and information content. In order to test
extensively the features of the proposed technique, the following
parameters are considered: decomposition levels (intra- and
inter-slice), filter type (intra- and inter-slice) and bitrate

For lossy compression, the peak SNR (PSNR) is used as
objective quality metric. In section 4.1 lossless results are
discussed, while in section 4.2 lossy compression is considered

4.1. Lossless compression
We test 3D-SPIHTp on the whole CT and MR datasets. All

coding results are reported in terms of bits per voxel (bpv) based
on real compressed file size.

In tables I and II we compare the different integer wavelet
filters referred in section 2.1 for the CT and MR datasets
respectively. Filter types refer to the intra-slice transform, while
the adopted inter-slice transform is (2,2) for all experiments. In
all cases, a single coding unit equal to the full slice number was
used to compress the volumes. Best results are shown an bold
numbers. It can be noticed that the (2+2,2) filter kernel
outperforms all other kernels for all datasets except for
MR_liver_t2, where (4,2) prevails. Although inferior to [13],
where a similar asymmetric decomposition tree was adopted with
different inter-slice wavelet, results are comparable with those
reported in [1] and [3].

Comparison of different coding unit sizes is shown in table
III. The CT_wrist dataset has been coded with 5 decomposition
levels and (2+2,2) filter intra-slice and variable decomposition
levels and (2,2) filter inter-slice. GOS of 16, 32, 64, and 128
slices are reported. It is possible to notice the decreasing trend of
the coding rate while GOS size increases. However, for constant
GOS size, a higher number of z decomposition levels does not
provide better performance. This could be explained by the
reduced inter-slice correlation due to the significant difference
between transversal and planar resolution (ratio of 0.085).

TABLE I. Comparison of different wavelet transforms on the CT dataset

Wavelet transform

Name (2,2) (2,4) (4,2) (4,4) (2+2,2) S+P A S+P B S+P C
CT_skull 2.074162 2.084404 2.072756 2.072871 2.067591 2.202656 2.178009 2.165796
CT_wrist 1.382904 1.385376 1.372028 1.372230 1.369475 1.560496 1.585457 1.574711
CT_carotid 1.588280 1.596066 1.581793 1.581924 1.579716 1.647465 1.617043 1.602703
CT_aperts 1.081957 1.087734 1.081394 1.082203 1.078274 1.173991 1.182898 1.175991

TABLE II. Comparison of different wavelet transforms on the MR dataset
Wavelet transform

Name (2,2) (2,4) (4,2) (4,4) (2+2,2) S+P A S+P B S+P C
MR_liver_t1 2.360825 2.385874 2.386182 2.385406 2.382884 2.545245 2.538325 2.515851
MR_liver_t2 1.743492 1.752467 1.720655 1.720858 1.721860 1.802205 1.767794 1.735677
MR_sag_head 2.307030 2.307953 2.308436 2.306656 2.300779 2.445971 2.489944 2.494804
MR_ped_chest 1.881426 1.882786 1.878120 1.877863 1.874376 2.193359 2.265028 2.265028
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4.1. Lossy compression
Thanks to SPIHT’s properties of precise rate control and

idempotence, lossy coding results can be generated by setting the
desired decoding bitrate once the dataset has been lossless
compressed. In order to evaluate lossy performance, we consider
the complete CT_skull dataset, compressed as a single coding
unit. As coder parameters we choose 5 levels of intra-slice
decomposition, 2 levels inter-slice decomposition, (2+2,2) intra-
slice and (2,2) inter-slice integer filters. Two typical compression
rates (0.1bpp and 0.5bpp) are chosen and results showing
PSNR/slice are illustrated in Fig. 2.

Fig. 2. Lossy results for the CT_skull dataset

The large PSNR variation is typical of 3D compression, as
reported also in [1]. Such phenomenon depends both on image
contents and transform operation. Results show that an average
PSNR of 34.65dBs is obtained at 0.1bpp while a value of 41.
26dBs is obtained at 0.5bpp.

Finally, a graphic example of lossy-compressed volumes is
shown in Fig. 3. A detail of slice 60 of CT_skull is compressed
at 0.125bpp (left), 0.5bpp (center) and compared to the original
(right). At 0.125bpp coding artifacts can be observed, but
perceptual quality is still good.

Fig. 3. Example of lossy compression result for detail of slice 60 of
CT_skull; from left: 0.125bpp, 0.5bpp and original.

5. CONCLUSIONS

In this paper we presented a new lossy to lossless volumetric
coding paradigm based on integer wavelet transform and SPIHT.

A composite decomposition scheme was adopted with inter-slice
packet wavelet and intra-slice dyadic tree. The 3D-SPIHTp
coder has been implemented and adapted to suit the hierarchical
subband structure. Issues on the refinement pass and context
entropy coding were discussed to gain additional performance.
Finally, the proposed scheme was comprehensively tested on a
well-known dataset. Results obtained for both lossy and lossless
compression are good and comparable to those of the state of the
art, showing that the coder succeeds in reaching good
performance for lossy to lossless compression, confirming the
validity of the scheme.
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TABLE III. Comparison of different coding unit sizes and inter-
slice levels for the CT_wrist dataset
GOS size Inter-slice levels bpv

16 2 1.426689
32 2 1.393799
64 2 1.375358
64 4 1.382973

128 2 1.369475
128 4 1.375102
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