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Fig. 1: A synthetic data set (top left) created by mixing the lo-

cal basis vectors (top right) with strengths determined by random

walks. Bottom, local basis vectors blindly recovered from the mix-

ture using our algorithm.

ABSTRACT

In some applications a local or ‘parts based’ represen-

tation is preferable to global basis functions such as those

used in Fourier and principal component analysis. In appli-

cations that require human understanding and editing of the

data, it is also desirable that the basis functions be in some

sense as “simple” as possible. This means, for example,

that the basis functions should not have Gabor-like ripples

if such ripples are not a prominent feature of the data to be

represented. This paper introduces a direct local basis con-

struction. Specifically, we show that local bases result from

maximizing an appropriate redefinition of pairwise orthog-

onality while maintaining the ability to represent the data.

The resulting basis functions are competitive with (and for

some applications superior to) those obtained from existing

algorithms, and the construction does not require that the

basis coefficients be statistically non-Gaussian or indepen-

dent, as would be the case with an independent component

analysis approach.

Fig. 2: The 100th and 150th eigenvectors of a collection of faces.

It is difficult to intuitively estimate the needed contribution of these

images in a task such as enlarging the nose on a given face.

1. INTRODUCTION

Given a set of data vectors xt we may wish to represent

those vectors as linear combinations of a set of basis vectors

(columns of A):

xt = A st

It is evident that there is considerable freedom in choosing

A. For example, supposing that A has been found, any con-

forming non-singular matrix W and its inverse can be in-

serted between A and s, producing another decomposition

with basis matrix Ã = AW and coefficients s̃t = W−1
st.

Since there are many linear bases that can represent a

class of data, some additional criterion is needed to select a

particular one among them. While economy of representa-

tion is an often-selected criterion, other characteristics of a

representation are more useful in some applications. In par-

ticular, in applications where the representation must be un-

derstood and edited by humans, locality and sparsity of rep-

resentation is desirable. A local basis is one where each ba-

sis vector is significantly non-zero over a limited and com-

pact region, and the representation is sparse when a feature

of the data is represented by one or a few basis vectors rather

than an overlapping combination of many vectors.

Locality and sparsity of representation can be motivated

by the police “identi-kit” application in which an operator

produces an image of a remembered face. Suppose that the

application uses an “eigenface” representation and the op-

erator produces the desired face image by adjusting coeffi-

cients of the eigenvectors of a face database. In this rep-

resentation each eigenvector affects many parts of the face

(the representation is not local), and each area of a recon-

structed face reflects the contribution of many eigenvectors
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(the representation is not sparse). When faced with a sim-

ple editing task, such as making the nose bigger, it is nearly

impossible for a human operator to know by how much the

contributions of individual eigenvectors should be changed

(Fig. 2). On the other hand, if the basis vectors are local,

each region can only be affected by a small number of basis

functions, and it is easier to determine the coefficients need

to be adjusted.

The signal processing and neural information process-

ing literature has demonstrated that a variety of local ba-

sis schemes can be derived by requiring locality and or-

thogonality (wavelets) or independence (and/or sparsity) of

the coefficients (independent component analysis (ICA)).

Many of these schemes produce basis functions with ring-

ing, kinks, or ripples. Although a machine can find a com-

bination of functions that sum (if needed) to a ripple-free re-

sult, for a human this can be a difficult task. In this paper we

demonstrate that ripple-free local representations can also

be constructed by maximizing an appropriate redefinition

of “orthogonality”. This construction produces attractive,

smooth shapes and makes no assumptions of the data; in

particular it does not require non-Gaussian statistics. Unfor-

tunately, in so doing we must give up strict orthogonality.

Observation: locality, smoothness, and orthogonality

cannot be simultaneously achieved in a ripple-free (positive-

only) basis with full coverage. (“Full coverage” here means

that at any point in the domain, there is at least one basis

function with a non-zero value.) If a local basis function

is smooth, it will necessarily overlap other functions as it

transitions from its maximum to zero (Figure 3). If the ba-

sis is also orthogonal, the positive contribution of this over-

lapping region must be somewhere cancelled by a negative

region (ripple).

2. DIRECTLY OPTIMIZING FOR BASIS

LOCALITY

Principal component analysis provides the decomposition

X = OS

of a data matrix Xd×n containing n (zero mean) data vec-

tors xt of dimension d into a weighted combination of k ≤
d orthogonal basis vectors (columns of Od×k; the columns

of Sk×n contain the sequence of corresponding weight vec-

tors). This is a linear decomposition that reproduces that

data (if k = n), but with basis vectors that are global and

unintuitive (Fig. 2).

We seek a different set of linear, not necessarily orthog-

onal, basis vectors that also represent the data. It is evident

that each desired basis vector is necessarily some unknown

sum of the columns of O.

With this in mind the decomposition can be rewritten

X = ÕS̃ = (OW−1) (WS)

Fig. 3: At every point in the domain at least one basis function

must have a significant (non-zero) value. When the basis func-

tions are also smooth each non-zero region of a basis function will

have “tails” on either side that necessarily overlap with other ba-

sis functions. The area of these overlaps is minimized when each

function has only one “hump”.

with an invertible matrix W . The matrix W can be chosen

either

1. to produce new coefficients S̃ = WS with some de-

sired qualities, or

2. to design new bases Õ = OW−1 with some desired

qualities.

The ICA literature emphasizes properties of the coefficients

such as independence and sparseness (albeit not using this

matrix formulation), with the properties of basis being de-

termined indirectly as a side effect of adjusting the coeffi-

cients.

In this paper we instead directly specify the desired ba-

sis properties by choosing R = W−1. The matrix R “re-

combines” the orthogonal basis functions in the columns of

O so as to produce new, more local, basis function in the

columns of Õ. How should R be chosen?

Consider first choosing R so as to minimize a pairwise

“absolute value orthogonality”

(f, g) =

∫
|f(t)||g(t)|dt (1)

summed across all pairs of basis vectors f, g ∈ Õ. If f(t) is

significant at a particular t, minimizing (1) requires all other

vectors to have small values at the same t. R must not be

singular, however, and thus OR by definition spans the data.

Given these constraints it may not be possible for all other

vectors to be strictly zero at t. Instead, the other vectors are

as small as possible while still representing the data.

Note that since the eigenvectors are a finite, linear com-

bination of the original data, if the data vectors are smooth

the eigenvectors will also be smooth. The new basis vectors

OR will be smooth as well, since they are also finite linear

combinations of smooth signals. The combined factors that

1) the new basis vectors must be small or zero at regions of

the domain that are represented by other vectors, and 2) the

new basis vectors are smooth, can only be satisfied when

the basis vectors are localized (Fig. 3).
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Fig. 4: When the combined “power” of the factors under the in-

tegral in Eq. 2 is greater than one the recovered basis functions

“ring”. Left, p = 2 (combined “power” is 4); Right p = 1.

There is one problem with this scheme, however (see

Fig. 4): the resulting basis vectors resemble the sinc func-

tion: they “ring”. The reason for this is most easily de-

scribed by considering the case where f is (at some stage

in the optimization for R) nearly equal to some other basis

vector g. In this case, with f(t) ≈ g(t), the largest value

under the integral in Eq. 1 is near the peak of f , where it

has the value f(t)g(t) ≈ f(t)2. Attempting to minimiz-

ing a squared quantity will reduce the peaks at the expense

of other regions, resulting in sinc-like ringing in this case.

The fact that the two functions f, g in Eq. 1 appear with a

combined square power is the problem.

Fractional power orthogonality

Instead, we will choose R to minimize the “square-root or-

thogonality”

(f, g) =

∫
|f(t)|p|g(t)|pdt (2)

(again, summed over all pairs of basis functions), with p =
0.5. The combined “power” of the two functions under the

integral is now one, so the minimization does not prefer

large values over small values. Note that this principle re-

sembles motivations for using the l1 rather than l2 norm to

produce sparse coefficients [1, 2].

R can be updated from an initial non-singular random

matrix using a gradient descent procedure. The objective to

be minimized is

E =
∑

k

∑
m �=k

(fk, fm)

=
1

2
[(Õt, Õ) − tr(Õt, Õ)]

where Õ = OR is the matrix of new (local) basis vectors
fk. The gradient of E with respect to Ra,b is (Rk denotes
the k-th column of R):

∂E

∂Ra,b

=
1

2
[

∂

∂Ra,b

|OR1|
P

|OR2|
P

+
∂

∂Ra,b

|OR1|
P

|OR3 |
P

+ · · ·

+
∂

∂Ra,b

|OR2|
P

|OR1|
P

+
∂

∂Ra,b

|OR2|
P

|OR3|
P

+ · · · ]

the terms above will be zero except for those corresponding
to column b so

∂E

∂Ra,b

=
1

2
[

∂

∂Ra,b

|OR1|
P

|ORb|
P

+
∂

∂Ra,b

|OR2|
P

|ORb|
P

+ · · ·

∂

∂Ra,b

|ORb|
P

|OR1|
P

+
∂

∂Ra,b

|ORb|
P

|OR2|
P

+ · · · ]

=
X

k �=b

∂

∂Ra,b

|ORb|
P

|ORk|
P

Looking at one term of this,

∂

∂Ra,b

|ORb|
P

|ORk|
P

=
X

t

∂

∂Ra,b

(fb(t), fk(t))

=
X

t

∂

∂Ra,b

|
X

c

Ot,cRc,b|
P

|
X

c

Ot,cRc,k|
P

these terms will be zero except when c = a (we know k �= b
already), so

=
X

t

∂

∂Ra,b

|Ot,aRa,b|
P

|
X

c

Ot,cRc,k|
P

=
X

b

X

k>b

X

t

pOt,a|
P

c Ot,cRc,b|P |
P

c Ot,cRc,k|P

|
P

c Ot,cRc,b|
sign(

X

c

Ot,cRc,b)

Implementation Trick

While this is the most direct approach to minimizing E, a

much simpler implementation is possible. Observe that if

the desired fk are known, then Õ is known and R can be

obtained by R = O−1Õ. Thus, a simpler gradient descent

is to take a small step adjusting each fk (rather than R) to

reduce E and then solve for the resulting R at the end of

each iteration. In this case the gradient of Eq. 2 with respect

to a particular sample f[k] of a digital basis vector is simply

d

df [k]
f [k]pg[k]p = p

f [k]pg[k]p

f [k]
= p

g[k]p

f [k]1−p

3. APPLICATIONS

We will demonstrate the local basis construction with a syn-

thetic one-dimensional basis mixture and the two-dimensional

face representation problem. The basis construction is a gra-

dient descent starting from random initialization. As is the

case with some previously published basis evolution algo-

rithms, some of the discovered basis functions may be du-

plicates. In practice such duplication can be detected using

either sophisticated [3] or simpler means, and the optimiza-

tion can be restarted from other locations until a complete

basis is generated. (Given a nearly complete collection, the

complement to the subspace spanned by the collection con-

tains the remaining vectors, and functions in this region can

be tried as starting points).

Synthetic Basis Mixture. As a first test of the direct

local basis construction, some analytically generated local
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Fig. 5: Two dimensional results: (Left) examples of local basis functions constructed from a collection of registered faces. (Right) example

basis functions from approximately registered video frames of a person speaking. (A constant offset has been added to all images to allow

visualization.)
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Fig. 6: (For comparison purposes) sample basis vectors discovered by non-negative matrix factorization. The NMF results are more local

than eigenvectors, but less so than those shown in Figs. 1,5.

functions (Fig. 1, right) were mixed, generating an evolving

“waveform” over time (Fig. 1, left). The weight on each

basis is a random walk generated by integrating a uniform

density random number generator.

The basis functions recovered using our algorithm are

shown in Fig. 1. They are of the same general shape as the

original basis vectors up to a change in sign (notice that the

leftmost and rightmost functions are teardrop shaped) but

are slightly more localized than the original functions.

For comparison, Fig. 6 (left) shows the results of non-

negative matrix factorization operating on the same data.

The one-dimensional evolution was run for 25K iterations.

While the basis vectors resulting from this algorithm are lo-

calized in the sense that they usually have a single dominant

peak, they also have some intermediate non-local variation.

Face representation results. Fig. 5 shows some of the

local basis functions discovered in two-dimensional face rep-

resentation tasks. For comparison, Fig. 6 (right) shows local

basis vectors discovered by non-negative matrix factoriza-

tion (NMF). The NMF was run for 2160 iterations and was

stopped when it did not appear to be changing further. As

with the one-dimensional results from NMF the facial basis

vectors have some undesirable global detail although they

do have dominant local peaks.

4. CONCLUSION

As discussed in the introduction, different applications ben-

efit from different representations. This paper describes an

approach for constructing a localized linear basis represent-

ing given data. The discovered basis functions are typically

smooth and the effects of individual functions are easy to

understand due to their locality. The construction also does

not require positivity, independence, or non-Gaussian statis-

tics of the data or the basis coefficients. As such it may be

applicable to certain practical problems, such as discovering

human-editable facial representations from data, that violate

the assumptions of independent component analysis.
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