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ABSTRACT

 Wavelets, fundamental component of the latest image 

coding standard JPEG 2000, have proven to be a very 

useful tool in representation and coding of 2D images.  

They are also a powerful instrument in catching zero-

dimensional singularities, though less efficient in dealing 

with ‘edge’ singularities.  Ridgelets, by definition, are a 

powerful tool in catching and representing line 

singularities in bidimensional space. 

In this paper we propose a hybrid approach that 

combines both Ridgelets and Wavelets for a more 

efficient representation of 2-D images with edges.                                                                                          

Results confirm the potential of the combined use of 

Wavelets and Ridgelets as efficient representation, 

showing substantial improvements when compared to 

only Wavelets. 

                                                                                                                               

1. INTRODUCTION 

Images are generally described via orthogonal, non-

redundant transforms like wavelet or discrete cosine 

transform. Their main limitation is that these bases do not 

take advantage of the regularity of many signal structures. 

Indeed, these basis are composed of vectors having a 

support which is not adapted to the elongation of the 

signal structures, such as regular edges. In this framework 

sparse representation of edges in natural images 

constitutes a challenging problem. Wavelet transforms 

(DWT), powerful instrument in catching zero-dimensional 

singularities, are less successful in dealing with ‘edge’ 

singularities.

The Ridgelet transform offers the possibility to 

achieve a very compact representation of linear 

singularities in images [1, 2]. Instrumental in the 

implementation of the Ridgelet is the Radon transform, a 

powerful tool to extract lines in edge dominated images.  

In this paper we introduce a hybrid scheme that 

combines Wavelets and Ridgelets, aiming at an efficient 

representation for images with edges. In the following we 

illustrate some of the properties and limitations of the 

Ridgelet and Radon transforms and we propose an 

implementation that overcome these limitations and that 

can be integrated into a DWT representation scheme. 

2. THE PROBLEM OF EDGE REPRESENTATION 

Let us assume to have a 2D function g defined on [0,1]2.

Let us consider that g is  smooth away from a 

discontinuity along a C2 curve . A grid of squares of 2-j

by 2-j has order 2j intersecting . At level j of the two-

dimensional wavelet pyramid, each wavelet is localized 

near a corresponding square of side 2-j by 2-j. There are 

therefore O(2j) wavelets which ‘feel’ the discontinuity 

along .

3. THE RIDGELET TRANSFORM 

3.1. The Continuous Ridgelet Transform 

We start by briefly reviewing the continuous ridgelet 

transform, defined by Candès and Donoho in [1], 

stemming from the Radon transform, instrumental in its 

implementation. Given an integrable bivariate function 

f(x1,x2), its Radon transform (RDN) is defined by:  
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Basically the Radon operator maps the spatial domain into 

the projection domain ( , t), in which each point 

corresponds to a straight line in the spatial domain; 

conversely, each point in the spatial domain becomes a 

sine curve in the projection domain. 

The Continuous Ridgelet Transform (CRT) is simply 

the application of a mono-dimensional wavelet 
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where the ridgelets )(,, xba  in 2-D are defined from a 

wavelet-type function )(t  as: 
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This shows that the ridgelet function is constant along the 

lines where constxx sincos 21
.

Comparing ridgelets with wavelets we observe that the 

parameters of the former are scale factor and line position 

(respectively a and ( ,b ) in (2)), while the latter uses 

scale factor and point position. As a consequence, 

wavelets are very effective in representing objects with 

isolated point singularities, while ridgelets are very 

effective in representing objects with singularities along 

straight lines.  

3.2. The Finite Ridgelet Transform and the wrap 

around problem of the Finite Radon Transform 

For practical applications, the development of a discrete 

version of the ridgelet transform and its algorithmic 

implementation is a challenging problem. Beacause of the 

radial nature of the Ridgelets, implementation based on 

the direct discretization of the continuous formula need 

interpolation in polar coordinates and this causes 

redundancy or non perfect reconstruction. In [3, 4] 

authors take a redundant approach and though it has the 

great merit of providing invertibility, it introduces a factor 

four in oversampling, that makes that not suitable for 

compression or efficient representation.  

In [5, 6], Do and Vetterli propose a new procedure that 

results to be invertible, orthogonal and achieves perfect 

reconstruction: the Finite RIdgelet Transform (FRIT). 

FRIT is based on the Finite RAdon Transform (FRAT),

which is defined as summations of image pixels over a 

certain set of “lines”. Those lines are defined in a finite 

geometry in a similar way as the lines for the continuous 

Radon transform in the Euclidean geometry. 

Denote }1,..,1,0{ pZ p
, where p is a prime number. 

Note that Zp is a finite field with modulo p operations. The 

FRAT of a real discrete function f on the finite grid 
2

pZ is

defined as:  
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Here lkL ,  denotes the set of points that make up a line on 

the lattice 
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The inverse transform is obtained through the Finite 

Back-Projection operator (FBP) defined as a sum of 

Radon coefficients of all the lines that go through a given 

point. Here f is supposed to be a zero-mean image: 
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From (5) it can be found that jiP ,  is:
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Substituting (6) into (4) we obtain that 
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and so the perfect reconstruction is achieved.  

FRIT needs an input image of size pxp, where p is a prime 

number, and this is an important limitation of this 

algorithm. Moreover wavelets usually require a dyadic 

length signal and this is absolutely incompatible with the 

FRAT output (that is a matrix px(p+1)). In the test we 

made, we extended the length of the signal from p to m,

where m is defined as: 

}),2(and)(:min{ NdnpnNnm d .

In our experiments we took p=31 and so m=32.

The just introduced FRIT has again the great merit of 

invertibility and orthogonality and it is not redundant, 

which makes it more suitable for efficient representation 

and compression application, though it has the problem of 

the wrap-around that introduces quite annoying artifacts 

when looking for sparse representation. 

We remind to [6] for a more detailed explanation of the 

wrap around problem; because of space limitation here we 

just remind that the behavior of the FRAT is such that the 

generic coefficient FRAT(k,l) covers a line and its parallel 

in the Zp space (see Fig. 1). This kind of problem exists 

for all the directions but the horizontal and vertical; for 

them no wrap around is present, therefore these are 

suitable directions for efficient edge representation in a 

hybrid scheme.  

4. THE HYBRID APPROACH 

We have introduced the problem of Wavelets on edges 

and proposed the Ridgelets as a solution for that. At the 

same time, when talking about the digital implementation 

of the Ridgelet we have underlined the limitations of the 

FRIT and the wrap around problem. We also stressed that 

FRAT(k,l) 

Fig. 1 The wrap around effect of the FRAT 
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there is no wrap around in the horizontal and vertical 

direction. 

In this section we introduce a scheme that combines the 

Wavelets and the Ridgelets. In particular we will use the 

Ridgelets for the representation of the information present 

in the HL1 and LH1 subbands of the wavelet 

decomposition. In these subbands is in fact present the 

high frequency information in the horizontal and vertical 

direction, therefore horizontal and vertical edges. 

Once extracted the edges then they are partitioned in 

blocks 32x32. The partitioning provides a solution to the 

‘stretching effect’ of the Digital Ridgelet Transform 

(DRT); namely, by doing the partitioning we reduce the 

risk of finding artificial edges that might span throughout 

all the image. 

The block diagram of the proposed approach is presented 

in Fig 3. At first we perform an edge approximation, 

retaining N coefficients of the Wavelet Transform; the 

resulting mean square error represents the reference 

starting point as far as the distortion is concerned. Then 

we compute a Ridgelet analysis of the first block of the 

edges partitioning, selected with an energy criterion or 

simply in a raster scan order. At each step we retain n

(n=1 at the first step) Ridgelet coefficients. Once obtained 

the Ridgelet reconstruction of the first block we subtract it 

from the edges in the image domain and we make a 

Wavelet analysis of  the resulting residual image retaining 

N-n coefficients. Finally we add the Wavelet residual 

reconstruction with the Ridgelet edges reconstruction, 

obtaining in this way a hybrid reconstruction. Now, if the 

mean square error between the edges and our hybrid 

reconstruction is smaller than the one between the edges 

and the Wavelet reconstruction then we add one Ridgelet 

coefficient for the Ridgelet analysis of the block and 

restart the procedure (point B in Fig. 3), otherwise we 

compute the following block (point A in Fig. 3) and so on. 

The aim is to catch the energy along the edges with only a 

few Ridgelet coefficients obtaining, step by step, a 

residual image with less and less edges and so containing 

only parts suitable to be analyzed with the DWT.  

At every step we then check if the reconstruction is 

improving or not, and if not then we halt the DRT 

analysis. This procedure is executed for all the blocks.

The feedback control provides a novel way to properly 

employ the DRT, limiting its use to the circumstances 

where a real advantage is provided. In this hybrid 

approach each of the two orthogonal transform DWT and 

DRT does provide in the end the best representation for 

those patterns of the image for which it is best suited. 

Elongated structures are represented with few DRT 

coefficients.

5. RESULTS 

The results are reported hereafter in Fig. 4.a and Fig. 4.b 

as rate distortion curves, with MSE versus Total number 

of coefficients needed. The blue curve is obtained using 

Fig. 2 Extraction of edges using the HL1 and LH1 subbands 
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Fig. 3 Block diagram of the proposed approach
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DWT coefficients only, while the red curve is obtained 

using the proposed hybrid approach (DRT+DWT). 

The ones reported here are typical results obtained for the 

image of the well known sequences Hall and Stefan. 

It is possible to notice that, on average, the proposed 

approach achieves the same distortion with 20-30% less 

coefficients, with peaks of 40% for Stefan. In Fig 5 we 

show the edges of the sequence ‘Hall’ extracted from the 

HL1 and LH1 subbands and the reconstruction with 1000 

hybrid coefficients and 1000 DWT coefficients. 

6. CONCLUSIONS 

In this paper we proposed a hybrid approach that 

combines both Ridgelets and Wavelets for a more 

efficient representation of 2-D images with edges.                          

Results confirm the potential of the combined use of 

Wavelets and Ridgelets showing substantial 

improvements when compared to Wavelets. Further 

investigation will be done in the direction of finalizing the 

coding scheme adopting an arithmetic encoder. 

7. REFERENCES 
1. E.J.Candes and D.L. Donoho, Ridgelets: a key to higher 

dimensional intermittency? Phil. Trans. R. Soc. Lond. A., 

1999. 

2. E.J.Candes, Ridgelets and the Representation of Mutilated 

Sobolev Functions. SIAM J. Math. Anal., 1999: p. 2496-

2509. 

3. Jean-Luc Starck, Candes E.J., and Donoho D., The curvelet 

transform for image denoising. IEEE Trans. on Image 

Processing, June 2002. 11(6): p. 670-684. 

4. D. Donoho and M.R. Duncan. Digital curvelet transform: 

strategy, imlementation and experiments. in In Proc. 

Aerosense 2000, Wavelet Applications VII. 2000. 

5. Do M. and V. M., The finite ridgelet transform for image 

representation. IEEE Trans. on Image Processing, January 

2003. 12(1): p. 16-28. 

6. M. Do and M.Vetterli. Orthonormal finite ridgelet transform 

for image compression. in International Conference on Image 

Processing ICIP. 2000. Vancouver, Canada. 

Fig. 4.a  Rate distortion curves (MSE versus number of coefficient) of 

the Wavelets (blue) versus the proposed approach for the frame Hall 

Fig. 4.b  Rate distortion curves (MSE versus number of coefficient) of 

the Wavelets (blue) versus the proposed approach for the frame Stefan Fig. 5  Sequence ‘Hall’ (a): the Edges extracted from the 

HL1 and LH1 subbands (b) and the reconstruction with 1000 

hybrid coefficients (b) and 1000 DWT coefficients (d). 
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