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ABSTRACT

This paper considers lossless compression of black and
white images using recently developed distributed turbo 
compression techniques.  An empirical study of image
pixel statistics is initially conducted in order to apply 
turbo compression algorithms to distributed compression
of image rows. In particular, it is noted that while the
entropy of the pixels throughout the image does not vary
much, the distribution and conditional distributions of 
pixel values are non-stationary. Corresponding
compression bounds are noted, appropriate coding
schemes based on turbo-codes are developed and 
simulation results are reported.

1. INTRODUCTION 

Turbo codes and LDPC codes have been shown to
perform well in the compression of independently and 
identically distributed data [1], as well as in the more
general case of distributed compression, including the
Slepian-Wolf problem [2-5]. This research is based on the
premise that given the above, turbo-codes may be a
promising technique in the problem of image
compression. Existing image compression [10] techniques
present certain characteristics that can be disadvantageous
in specific applications, and turbo-codes could potentially
avoid those. We thus seek to use turbo-codes in order to
develop a compression method which will be lossless, 
unlike habitual JPEG compression, noise robust and based
on 2-dimensional correlation models, unlike run-length
coding, as well as low-complexity and distributed.

It was first realized that in order to develop a good 
turbo compression scheme, it was crucial to obtain an 
adequate statistical model of the image data. The first part
of this paper is thus devoted to the development of a 
suitable image model based on the study of empirical
image data. Among other characteristics, we seek to
model the non-stationarity observed in image data [6].
Our findings are summarized in Section 2. 

Our final contribution is to incorporate this image
model into the design of appropriate turbo-coding
schemes. Section 3 describes the development of these
schemes, and we report on the results obtained through
simulations in Section 4.

2. STATISTICAL MODELING OF BLACK AND 
WHITE IMAGES IN SLEPIAN-WOLF CONTEXT

2.1. Image Modeling

In the process of lossless image turbo-compression, we 
will attempt to utilize local dependencies among pixels of 
the image.  When compressing a pixel in the context of a 
two-dimensional image, we must first choose effectively
the neighboring pixels aiding our compression.  Since the
conditional entropy of the pixel given its neighbors gives
a limit on the achievable (lossless) compression rate, we 
would like to choose the neighboring pixels in such a way
that a worthwhile compression can be achieved while 
reasonable modeling and implementation simplicity are
maintained.

Figure 1 illustrates some possible choices used for our
calculations and simulations. One particularly natural and 
simple formulation may be to use information from a
pixel in the previous image row (2-row model in Figure
1). We found that the second and third row pixels are 
significantly correlated with the original pixel; hence the
3-row model is also included. Nonetheless, subsequent
rows yielded little additional information. We also
considered the alternate T model, which conditions a pixel
not only on its predecessor but also on the neighbors of 
the latter. Finally, we considered a square model.

T model
Square

model

2 row

model

3 row

model

Figure 1: Entropy model definitions: m1 pixels in
grey, m2 to m3 pixels in white. 
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For a given image and selected neighboring pixel model,
our approach was to calculate empirically the joint
probability distribution of the pixels and then to evaluate
the ensuing empirical conditional (pixel) entropy.  Table 1 
reports on the empirically calculated conditional pixel
entropies for several standard grayscale images converted
to black and white through thresholding, for various
neighbor models from Figure 1. In each case, two values 
are given: one is the conditional empirical entropy
calculated over the whole image, while the second is the
average of the conditional empirical entropies calculated 
for each individual row.  Since entropy is a concave
function in the input probability distribution, the latter 
approach yields lower conditional entropies and thus a 
potential for better achievable compression. Nonetheless,
as the differences between the two quantities are not
appreciable, an adaptive rate coding method (within an 
image) was not found to be critical. Nonetheless, an 
adaptation to these statistical variations was found to be
useful in the pixel recovery and will be discussed in the
coding section.

Image 2 row 3 row T model Square
model

Camera .42 .67 .37 .56 .23 .28 .12 .16
Text .80 .85 .34 .43 .34 .44 .16 .16
Goldhill .63 .77 .58 .70 .40 .45 .18 .30
Bridge .69 .76 .63 .70 .40 .44 .19 .30
Baboon .85 .89 .77 .81 .53 .56 .30 .43

Table 1: Empirical pixel entropies of various images
under different conditioning models, first subcolumn 

as stationary processes, second subcolumn as non-
stationary processes. 

Finally, we illustrate through Figure 2 the non-stationarity 
of the joint statistics for a particular image.

Figure 2: Illustration of non-stationarity properties of 
images: distribution of triplets (three consecutive 
pixels) as it changes through the image ‘camera’. 

2.2 Slepian-Wolf Modeling

The Slepian-Wolf problem concerns the separate
encoding of correlated messages, and their joint recovery,
as illustrated in Figure 3. In this example, two correlated

messages, and , are generated and must be

encoded by two encoders that do not communicate with

each other, at rates denoted by  and . The two 

encoded messages are then transmitted over a channel,
and are received by a decoder which attempts to recover

and  jointly.

1m 2m

1R 2R

1m 2m

Joint
Source

Encoder #1

Joint
Decoder

Encoder #2

f1(m1)

f2(m2)

m1

m2

R1

R2

Figure 3: The Slepian-Wolf Problem 

Evidently, were and  encoded jointly, the

optimal encoding rate would be their joint entropy,
denoted by

1m 2m

2112121 |, mmHmHmmHRR .

Perhaps surprisingly, Slepian and Wolf [7] have proven
that in the case of separate encoding, the compression rate
can also asymptotically attain this joint entropy. More
precisely, as made clearer by the region of attainability in
Figure 4, the zero-error objective can be obtained by

compressing the and  to the rates of1m 2m 11 mHR

and 22 mHR  respectively, while by allowing an

arbitrarily small error rate we can reach any compression
rate pair respecting the following constraints:

211 | mmHR

122 | mmHR

2121 ,mmHRR

Subsequently, we can generalize the Slepian-Wolf
Problem to include as many sources as desired.

Previous work on coding for this problem can be found in
[2-5] and many others.
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Figure 4: The Slepian-Wolf attainable region

In the case of image compression considered here, we
make use of these results by modeling the source of each
pixel as a separate source of the Slepian-Wolf problem.
Thus, we can attempt to encode each row of the image
without the referring to the joint realizations of successive
pixels without entailing any measurable loss in rate. 

Furthermore, we fix our interest upon a subset of the
attainable region, notably the region satisfying

1 1R H m . By convexity and time-sharing

arguments, this can be shown to a sufficient goal for any 
Slepian-Wolf coding scheme, since any other point can be 
attained through the use of a time-sharing scheme
between the encoders. 

3. FIXED RATE TURBO CODING OF IMAGES 

We have previously developed a fixed rate 3:2 serial turbo
coding scheme, and applied it to the compression of
Bernouilli data as well as correlated messages of large
block sizes (about 5000 bits) [5]. Based on the statistical
modeling described in section 2, we first apply this coding
scheme, unmodified, to image data. We then develop a
modification of the scheme having aim of adapting it to
the non-stationary nature of image data. Results for both
the unmodified and improved coding schemes are then
reported on in section 4. 

The serial concatenated codes used in the original scheme
consist in a repetition-like FSM encoder with a random
output interleaver followed by a Latin Square encoder of 
rate 3:1 or 5:2. These embodied the coding principles
described in [8,], and can be found in [5]. The overall rate
was 3:2, depending on the Latin Square encoder chosen. 

The decoding was based on the BCJR algorithm [1], but it
should be noted that the complexity of the decoding could
have been reduced by employing the simplifications
entailed by the use of the repetition encoder [9].

The block diagrams of the encoder and decoder are given
in Figures 5 and 6, while more details on the performance
and design of this coding scheme can be found in [5].

Image

(jointly

correlated

rows)

Enc. #1

Joint

Image

Decoder

Entropy Enc.

Enc. #2

Row 1 i1 c1

c2

Row 2

Figure 5: Serial turbo-coding for Slepian-Wolf 
problem

Dec. #2 Dec. #1
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Figure 6: Serial turbo decoding for Slepian-Wolf 
problem

Based on the statistical investigation reported in Section 2, 
it is known that the image data is highly non-stationary.
Thus, the conditional entropy varied greatly from one row 
to another, a fact leading to difficulties in the recovery of
individual rows. To counteract this fact without
immediately modifying the coding scheme, as well as take
advantage of the improved performance of turbo-codes
for larger packet sizes, immediately before decoding we 
concatenated each nth row of the image together, thus 
producing what we called “superrows”. The result was 
essentially to produce a shorter but wider image, thus
obtaining the larger packet sizes improving the
performance of turbo-codes.

This encoding scheme was applied to the compression of 
the images by compressing the first superrow to its
entropy, and then compressing all other superrows using
the serially concatenated codes as depicted in Figure 5.
The recovery of each superrow was then accomplished by 
using the fully recovered previous supperrows as side
information, as depicted in Figure 6.

Finally, we modified the coding scheme in order to take
into account the non-stationary pixel distributions. Our 
approach was to calculate empirically the joint probability

distribution 1 2...i i i
Np m m m  for each row based on the
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previous  rows. This information was then transmitted
along with the actual data. At the recovery side, this
information was used to bias

N

1 1 1 2 2* ... | ...i i i i i i i
Np M m p m m m m mN

, as opposed to

previously, where 
1 1 *i ip M m  was constant for all rows 

based on the average over the whole image, which 
implicitly assumed a stationary model. As will be detailed
in the next section, the addition of these local statistics
improved the coding performance.

4. EXPERIMENTAL RESULTS 

In this section, we report on results implementing the
compression methods described in section 3 and their
performance for various test images of size 256 by 256
pixels. We applied the described coding schemes to each 
image, basing the conditional distribution on the side
information on the ‘T’, 2-row and 3 row models. In each 
case, we compared the recovery using average and 
localized statistical information, i.e. under the stationary
and non-stationary assumptions described in section 3.
The entries of Table 2 list the number of rows that we 
needed to concatenate in order to obtain lossless recovery,
or in the case of a ‘---‘ entry, the failure to recover the 
image with maximum concatenation. We observe an 
improvement as additional rows are considered, and an
interesting performance in the case of the one-row ‘T’
model. Furthermore, we observe that the inclusion of local
statistics improves the performance, as observed by the
errorless recovery for smaller interleaver sizes (implied by 
the smaller number of row concatenations needed for
errorless recovery) as well as the recovery of some images
which could not be decompressed based on average
statistics only. For example, the image `baboon` could not
be decompressed in any case because of its high entropy. 

Image T model 2 row 3 row
Camera 128 128 128 128 128 128

Text 128 64 --- 128 128 128
Goldhill 32 64 4 4 4 16
Bridge 32 32 4 4 4 16
Baboon --- --- --- --- --- ---

Table 2: Contents indicate largest value of ‘n’ enabling 
errorless recovery (every nth row being concatenated). 
First subcolumn using stationary assumption, second 
subcolumn using non-stationary assumptions. Failure 
to recover image for any ‘n’ is indicated by ‘---‘. 

5. CONCLUSION 

To summarize, the first contribution of this research work
was to initiate the investigation of image modeling

appropriate for coding design, particularly in the Slepian-
Wolf context. Several models were suggested, and the
achievable compression was calculated through a study of 
the empirical entropies yielded under these modeling
assumptions. Turbo-coding compression methods based 
on these models were then implemented, and results in
noiseless compression were reported.

It is hoped that this work should motivate future efforts in
the modeling of images in a way motivating the
development of compression codes. Furthermore, there
remains much to be done from both the modeling and 
coding point of view for grayscale or colour images as
well as sequences of images (such as movies) through
possible extension of the methods presented here. 

6. REFERENCES 

[1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon 
Limit Error Correcting Coding and Decoding: Turbo Codes”, 
Proc. International Conference on Communications, Geneva, 
Switzerland, pp. 1064-1070, June 1995.

[2] A. Aaron, B. Girod, “Compression with Side Informaion 
Using Turbo Codes”, Proc. of the IEEE Data Compression
Conference, Snowbird, Utah, pp. 252-261, April 2002. 

[3] J. Garcia-Frias, “Compression of correlated binary sources 
using turbo codes”, Comm. Letters, IEEE, Vol.5 No. 10, 
October 2001. 

[4] A. Liveris, Z. Xiong, C.N. Georghiades, “A Distributed 
Technique for Correlated Images Using Turbo-Codes”, Comm. 
Letters, IEEE, Vol. 6 No. 9, September 2002. 

[5] I. Deslauriers, J. Bajcsy, “Serial Turbo Coding for Data
Compression and the Slepian-Wolf Problem”, Proc. of the IEEE 
Information Theory Workshop, Paris, France, pp. 296-299, 
March 2003. 

[6] A. Rosenfeld, Image Modeling, Academic Press, 1981. 

[7] D. Slepian, J. K. Wolf, “Noiseless Coding of Correlated 
Information Sources”, IEEE Transactions on Information 
Theory, vol. 19, pp. 471-480, July 1973. 

[8] P. Mitran, J. Bajcsy, “Design of Fractional Rate FSM
Encoders Using Latin Squares”, ISIT Recent Results Session,
Washington D.C., June 2001. 

[9] S. ten Brink, “ Rate One-Half Code for Approaching the
Shannon Limit by 0.1 dB”, IEE Electronic Letters, pp. 1293-
1294, July 2000. 

[10] A. K. Jain, Fundamentals of Digital Image Processing,
Prentice Hall, 1989. 

III - 676

➡ ➠


