
A MEMORY-EFFICIENT FAST ENCODING METHOD FOR VECTOR

QUANTIZATION USING 2-PIXEL-MERGING SUM PYRAMID

Zhibin Pan
1)

, Koji Kotani
2)

, and Tadahiro Ohmi
1)

1) New Industry Creation Hatchery Center, Tohoku University, Japan

2) Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Japan

Aza-aoba 05, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
E-mail: pzb@fff.niche.tohoku.ac.jp

ABSTRACT

Vector quantization (VQ) is a famous signal compression

method. In a framework of VQ encoding, the fast search

method for finding the best-matched codeword (winner) is a

key issue because it is the time bottleneck for practical

applications. To speed up VQ encoding process, some fast

search methods that are based on the concept of

multi-resolutions by introducing a pyramid data structure

have already been proposed in previous works [5]-[7].

However, there still exist two serious problems in them. First,

they need a lot of extra memories for storing all purposely-

constructed intermediate levels in a pyramid, which becomes

an overhead of memory. Second, they completely discard

the obtained Euclidean distance that has already been

computed at an intermediate level whenever a rejection test

fails at this level during a search process, which becomes an

overhead of computation.

In order to solve the overhead problems of both memory

and computation as described above, this paper proposes a

memory-efficient storing way for a vector and a recursive

computation way for Euclidean distance level by level based

on a 2-pixel-merging (2-PM) sum pyramid, which can

thoroughly reuse the obtained value of Euclidean distance at

any level to compute the next rejection test condition at a

successive level. Mathematically, this method does not need

any extra memories at all and can reduce the original

computational burden that is needed in a conventional

non-recursive computation way to about half at each level.

Experimental results confirmed that the proposed method

outperforms the previous works obviously.

1. INTRODUCTION

In conventional VQ [1] method, an N N image to be

encoded is firstly divided into a series of non-overlapping

smaller n n image blocks. Then VQ encoding is

implemented block by block sequentially. The distortion

between an input image block and a codeword can be

measured by squared Euclidean distance for simplicity as

 (1)

where I is the current image block, Ci is the i
th
 codeword, j

represents the j
th
 element of a vector, k (=n n) is the vector

dimension and Ncis the codebook size.

 Thus, a best-matched codeword (winner) with minimum

distortion can be determined straightforwardly by

 (2)

where Cw means winner and subscript “w” is the index of

winner. This process for finding winner is called a full search

(FS). Once “w” has been found, which uses much less bits

than Cw, VQ only transmits this index “w” instead of Cw to

reduce data amount for the image compression. Because the

same codebook has also been stored at the receiver, by using

the received index “w”, it is very easy to reconstruct an

image by pasting the corresponding codword one by one.

Obviously, the principle of VQ encoding implies that only

the sole winner Cw has to be found by an exact Euclidean

distance computation but all other Ci (i w) has to be rejected

actually. This means that an exact Euclidean distance for Ci

(i w) is unnecessary. Instead, it is sufficient to just know

whether Euclidean distance from I to Ci (i w) is “larger”

than the minimum Euclidean distance from I to Cw or not. In

other words, VQ encoding can also be viewed as a process

for rejecting all non best-matched codewords rather than

finding a best-matched codeword. This property of VQ

provides a possibility of roughly computing or estimating

Euclidean distance to see whether it is really “larger” so as to

make a codeword rejection.

Because the high dimension k of a vector is the main

problem for computing Euclidean distance in VQ, it is very

important to firstly use appropriate low dimensional features

to approximately express a vector and then to roughly

compute Euclidean distance between two vectors based on

them for a rejection. One class of methods [2]-[4] is based on

using the scalar statistical features of a vector (i.e. L1 norm,

the variance and L2 norm). Another class of methods [5]-[7]

is based on the multi-resolution concept by introducing an

appropriate pyramid data structure to describe an original

vector with a series of low dimensional intermediate levels.

Both of them are very search-efficient but they suffer from

the overhead problems of memory and computation. This

paper aims at improving the methods proposed in [5]-[7] and

completely overcoming the two overhead problems.

2. RELATED PREVIOUS WORKS

During a winner search process, suppose the “so far”

minimum Euclidean distance is dmin. Based on statistical

features of a vector, the previous work [2] proposed a

rejection rule as: If holds, then reject Ci

safely, where MI is the mean of an input image block I and

MCi means the same for Ci. This is the famous ENNS

method. Then, the previous work [3] proposed a

ci
i

w NiCIdCId ,,2,1)(min)(,

2

,

2

c

k

j

jiji NiCICId ,,2,1)(
1

2

,,

2

2

min

2
dMCMIk i

III - 6690-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

supplementary rejection rule when ENNS method fails as: If

holds, then reject Ci safely as

well, where VI is the variance of I and VCi means the same

for Ci. This is the famous EENNS method. To improve [3]

further, the previous work [4] proposed another additional

codeword rejection rule when EENNS method also fails as:

If holds, then reject Ci safely as well,

where L2I is the L2 norm of I and L2Ci means the same for Ci.

This is EEENNS method (i.e. equal-average equal-variance

equal-norm nearest neighbor search). EEENNS method is

the current fastest search method by using statistical features

of a vector. But EEENNS method cannot avoid the overhead

of three extra memories for storing the mean, the variance

and L2 norm of each Ci. Furthermore, if any one of these

three rejection tests in EEENNS method fails, the overhead

of computation inevitably occurs as well.

 On the other hand, in order to realize a multi-resolution

description for a vector, a pyramid data structure can be

taken into account naturally. Then, a 4-PM mean pyramid as

shown in Fig.1 (a) is proposed in the previous works [5], [6].

Fig.1. For an n n block, (a) a 4-PM mean pyramid with

bottom level u1=log4(n n) and (b) a 2-PM sum pyramid

with bottom level u2=log2(n n)=2 u1. One new level is

sandwiched in-between every 2 levels of a conventional

4-PM pyramid (shadowed). All levels above the bottom

level are called as intermediate levels afterwards.

Then a hierarchical rejection rule is set up in [5], [6] as

(3)

Suppose MIv, m is the m
th

pixel (the mean after roundoff) at

the v
th
 level in a 4-PM mean pyramid for I and MCi,v, m

implies the same thing to Ci for m [1~4
v
], then Euclidean

distance at the v
th
 level for v [0~u1] between the two 4-PM

mean pyramids is , where the

real Euclidean distance at the bottom level Lu1 can be

obtained by d
2
(I, Ci)=d

2
m, u1(I, Ci). For a 4 4 block, u1=2.

Thus, at any v
th
 level for v [0~u1], if 4

u1 v
d

2
m,v(I, Ci)

>d
2
min holds, then the current real Euclidean distance d

2
m, u1(I,

Ci) is definitely larger than d
2
min. As a result, the search can

be terminated at this v
th
 level and Ci can be rejected safely.

Originally, this 4-PM mean pyramid is used for a

progressive image transmission starting from the top level. If

the transmission can be terminated before it reaches the

bottom Lu1 level by a practical requirement at the receiver,

image compression can be realized because the transmitted

maximum data amount so far will be (1+4
1
+4

2
+…

+4
u1 1

)=(4
u1

1)/3=(k 1)/3. Obviously, two constraints exist

in constructing a pyramid for image transmission. First, it

must guarantee each pixel value is an integer and in [0, 255]

interval for a 8-bit displaying. Second, it must keep the

aspect ratio of a 2-dimensional image to be constant in order

to show it correctly. Therefore, the averaging, the roundoff

operation and 2 2 pixel merging way are required.

 This 4-PM mean pyramid method needs (1+4
1
+4

2
+ …

+4
u1 1

) extra memories to store all intermediate levels for

each Ci. it is much more than the overhead of memory in

EEENNS method. Obviously, if a rejection test fails at a

certain level, the overhead of computation will inevitably

occurs as well. This is because when a test fails at the v
th

level, the obtained Euclidean distance 4
u1 v

d
2
m,v(I, Ci) is

discarded completely and then 4
u1 (v+1)

d
2
m,v+1(I, Ci) is

computed again for next rejection test at the (v+1)
th
 level.

This is surly a waste of computation.

To use multi-resolution concept more effectively, it is

surely better to construct more levels in a pyramid. In order

to improve the 4-PM mean pyramid, a 2-PM sum pyramid

[7] is proposed as shown in Fig.1 (b), which can completely

remove away the two constraints for constructing a pyramid

for image transmission and double the resolutions in a

pyramid. However, the final distortion measurement adopted

in [7] is Manhattan distance. This paper tries to exploit the

power of the 2-PM sum pyramid proposed in [7] further by

introducing Euclidean distance and meanwhile completely

avoiding the overhead of memory and computation.

3. PROPOSED METHOD

The advantages of directly using a 2-PM sum pyramid
compared to a 4-PM mean pyramid are: (1) exact for
operations in integer form; (2) doubled number of
intermediate levels for an easier rejection; (3) lighter on-line
computational burden for constructing the pyramid of an
input I. Accordingly, its disadvantages are: (1) more extra
memories; (2) probably more overhead of computation.

The first two advantages are obvious. An analysis on the
third advantage is given below. It is lighter to construct a
2-PM sum pyramid because it needs (2

u2 1
+…+2

2
 +2

1
+1)

=2
u2

1=n n 1 addition (). In contrast, a 4-PM mean
pyramid needs (4 1) (4

u1 1
+……+4

2
 +4

1
+1)=4

u1
1=n n 1

addition (), (4
u1 1

+…+4
2
 +4

1
+1)=(n n 1)/3 division () for

averaging and (4
u1 1

+…+4
2
 +4

1
+1)=(n n 1)/3 truncating

operations for converting the mean from a real to an integer.
Regarding disadvantage of memory, it needs (2

u2 1
+…+2

2

+2
1
+1)=2

u2
1=n n 1 extra memories for a 2-PM sum

pyramid but just (4
u1 1

+…+4
2
 +4

1
+1)=(n n 1)/3 extra

memories for a 4-PM mean pyramid. In addition, a 2-PM
sum pyramid has to use a longer [8+(u2 v)] bit memory unit
at the v

th
 level for v [0~u2] while a 4-PM mean pyramid

always uses 8-bit one for all levels. But this will not cause
any problem for a 32-bit general-purpose computer.

Similar to Eq.3, a new hierarchical rejection rule can be

got using Euclidean distance and a 2-PM sum pyramid as

(4)

where Euclidean distance at the v
th
 level for v [0~u2]

is , SIv, m is the m
th

pixel at the

v
th
 level for I and SCi,v, m means the same to Ci for m [1~2

v
].

2

min

22
dVCVIMCMIk ii

2

min

2

22 dCLIL i

),(4),(4

),(4),(

2

0,

12

1,

11

2

,

12

1,

im

u

im

u

ivm

vu

ium

CIdCId

CIdCId

),(2),(2

),(2),(

2

0,

22

1,

12

2

,

22

2,

is

u

is

u

ivs

vu

ius

CIdCId

CIdCId

v

m mvimv

Def

ivm MCMICId
4

1

2

,,,

2

,),(

(a).

L0
(top level)

L1

L2

Averaging

Lu1
(bottom level)n n

(a).

L0
(top level)

L1

L2

Averaging

Lu1
(bottom level)n n

Summing

L0
(top level)

L3

L4

(b)

Lu2
(bottom level)

L1

L2

n n

Summing

L0
(top level)

L3

L4

(b)

Lu2
(bottom level)

L1

L2

n n

v

m mvimv

Def

ivs SCSICId
2

1

2

,,,

2

,),(

III - 670

➡ ➡

The real Euclidean distance at the bottom level Lu2 can be

obtained by d
2
(I, Ci)=d

2
s,u2(I, Ci). For a 4 4 block, u2=4.

Thus, at any v
th
 level for v [0~u2], if 2

(u2 v)
d

2
s,v(I, Ci)

>d
2
min holds, then the current real Euclidean distance d

2
s,u2(I,

Ci) is definitely larger than d
2
min. As a result, the search can

be terminated at this v
th
 level and Ci can be rejected safely.

Proof of Eq.4
 From a 2-PM sum pyramid shown in Fig.1 (b), it is clear

that and

are true for m [1~2
v
]. By using (a

2
+b

2
) (a+b)

2
/2, we have

 Because the initial distance computation is d
2
s,0(I, Ci) and

totally (u2+1) levels are available, Eq.4 can be easily

achieved by using the relation d
2
s,v+1(I, Ci) 2

1
d

2
s,v(I, Ci).

 Comparing Eq.4 with Eq.3, it is obvious that Eq.4 has

doubled the number of rejection tests for a codeword. If Eq.4

is directly used, it also needs (n n 1) extra memories for

each Ci. And when a test at the v
th
 level fails, the obtained

d
2
s,v(I, Ci) is discarded completely and d

2
s,v+1(I, Ci) must be

computed again. Eq.4 also has two overhead problems.

 Therefore, we firstly discuss how to store a 2-PM sum

pyramid in a memory-efficient way. In fact, it is unnecessary

to store all pixels at each level because a lot of redundancies

exist in them. From , it achieves

 . This means that an even term is not

independent and it can be obtained on-line by using previous

SIv,m and a odd term to avoid a storage. For Ci, it is the same.

Thus, only the odd terms at the v
th
 level for v [0~u2] must

be stored. Then, d
2
s,v+1(I, Ci) becomes

(5)

 Based on Eq.5, it is only necessary to store

 for I. Therefore, (1+2
0
 +2

1
+…+2

u2 1
)

=2
u2

=n n memories in total are sufficient for storing a 2-PM

sum pyramid of input I. It can save (n n 1) extra memories

needed in a direct storing way. For Ci, it is the same. This

result actually reflects the requirement of information theory

that states n n memories should be sufficient for storing n n

dependent elements of a vector. Regarding computational

burden using Eq.5, because all must be known

already for m [1~2
v
] after the d

2
s,v(I, Ci) check failed and the

 is computed first, Eq.5 only needs

(3 2
v
)+(2

v
1)=2

v+2
1 addition (), 2 2

v
=2

v+1
 multiplication

() operations. In contrast, a direct computation way using

the definition of d
2
s,v+1(I, Ci) needs (2

v+1
)+(2

v+1
1) =2

v+2
1

additions () and 2
v+1

 multiplications (). Obviously, Eq.5

does not introduce any extra computational burden.

Secondly, we discuss how to reuse the obtained d
2
s,v(I, Ci)

to compute d
2
s,v+1(I, Ci) recursively in order to reduce more

computational burden further. A recursive computation way

is proposed by using (a
2
+b

2
)=(a+b)

2
2ab as

(6)

From Eq.6 it is obvious that d
2
s,v(I, Ci) is completely

reused again so that d
2
s,v+1(I, Ci) can be computed recursively.

Eq.6 is actually a realization of the multi-resolution concept,

which implies that any higher resolution can be obtained by

just adding some improvements recursively into a lower

resolution rather than computing it from the very beginning

once again. Eq.6 only needs [2 2
v
+(2

v
1)+2] =(3/4) 2

v+2
+1

addition () (Note: the factor “2” in Eq.6 is realized by 1 ()

instead of 1 () operation) and 2
v
=(1/2) 2

v+1
 multiplication

() operations. And the initial check at L 0 level needs 1 ()

and 1 () operation. Because a multiplication () is heaviest,

Eq.6 can save about half of the computational burden further

compared to Eq.5 or a direct way of computing d
2
s,v+1(I, Ci).

Based on the discussions above, a search flow can be

summarized as follows: (1) Construct an accompanying

2-PM sum pyramid for each Ci off-line. Only store the odd

terms but the even terms for v [0~u2] levels (2) Sort all

codewords by the real sum at L0 level in ascending order

off-line. (3) For an input I, construct its accompanying 2-PM

sum pyramid on-line. Similarly, only store the odd terms but

the even terms for v [0~u2] levels. (4) Find an initial nearest

(NN) codeword CN among the sorted codewords by using a

binary search, which is the closest codeword in terms of real

sum difference being minimum.

It needs log2(Nc) times comparisons (CMP). Then compute

and temporally store “so far” , d
2
v, min=

2
u2 v

d
2
min in order to simplify a future rejection test at the v

th

level for v [0~u2 1]. This step needs (2k 1) additions ()

and (k+u2) multiplications () operations. (5.1) Continue the

winner search up and down around CN one by one. Once

 holds, terminate search for the upper

part of sorted codebook when i<N or the lower part when

i>N; If winner search in both upper and lower directions has

been terminated, search is complete. Clearly, the current “so

far” best-matched codeword must be the winner. Then

search flow returns to Step 3 for encoding another new input.

(5.2) Otherwise, test whether is true or not

for v [1~u2]. If it is true, reject Ci safely. (Note, Eq.6 must

be introduced here for computing d
2
s,v(I, Ci) recursively.) (6)

If all tests fail for a rejection, it implies that current Ci is a

mvmvmv SISISI 2,112,1, mvimvimvi SCSCSC 2,1,12,1,,,

),(22

min NCIdd

1,0,1,00,),(NNs SCSICId

2

min,0

2

1,0,1,0 dSCSI i

),(2

2

2

2

),(

2

,

1

2
2

1 ,,,

1

2
2

1 2,1,12,1,2,112,1

1

2

1

2

2,1,2,112,1,12,1

1

2

1

2

2,1,2,1

2

12,1,12,1

2

1

2

,1,,1

2

1,

1

ivs

m mvimv

m mvimvimvmv

m mvimvmvimv

m mvimvmvimv

m mvimvivs

CId

SCSI

SCSCSISI

SCSISCSI

SCSISCSI

SCSICId

v

v

v

v

v

mvmvmv SISISI 2,112,1,

12,1,2,1 mvmvmv SISISI

12,23,21,2 2,,, uuuu SISISI
3,21,21,11,0 ,,, SISISISI

mvimv SCSI ,,,

12,1,12,1 mvimv SCSI

12,1,12,1,,,

2

1 12,1,12,1

2

,

2

1 2,1,2,112,1,12,1

2

1

2

,,,

2

1 2,1,2,112,1,12,1

2

1

2

2,1,2,112,1,12,1

2

1

2

2,1,2,1

2

12,1,12,1

2

1

2

,1,,1

2

1,

2),(

2

2

),(
1

mvimvmvimv

m mvimvivs

m mvimvmvimv

m mvimv

m mvimvmvimv

m mvimvmvimv

m mvimvmvimv

m mvimv

Def

ivs

SCSISCSI

SCSICId

SCSISCSI

SCSI

SCSISCSI

SCSISCSI

SCSISCSI

SCSICId

v

v

v

v

v

v

v

2

min,

2

, , vivs dCId

v

v

v

v

m mvimvmvimvmvimv

m mvimvimvmvmvimv

m mvimvmvimv

m mvimv

Def

ivs

SCSISCSISCSI

SCSCSISISCSI

SCSISCSI

SCSICId

2

1

2

12,1,12,1,,,

2

12,1,12,1

2

1

2

12,1,,,12,1,

2

12,1,12,1

2

1

2

2,1,2,1

2

12,1,12,1

2

1

2

,1,,1

2

1,

1

),(

III - 671

➡ ➡

better-matched codeword, then update d
2
min by d

2
s, u2(I, Ci)

and all d
2
v, min for v [0~u2 1] again. Meanwhile, update the

corresponding winner index “so far”. Then, return to Step

(5.1) to test next codeword.

4. EXPERIMENTAL RESULTS

To compare the search performance with previous works,

simulation experiments using MATLAB are conducted.

Codebooks of size 256, 512 and 1024 are generated using

512 512, 8-bit Lena image as a training set based on [8].

Block size is 4 4. Search efficiency is evaluated by total

computational burden in terms of the number of addition (),

multiplication () and comparison (CMP) operations per

input vector, which consists of (1) finding the initial

best-matched codeword CN and computing the initial d
2
min,

d
2
v, min ; (2) computing test condition for a possible rejection

using each statistical feature in EEENNS method or each

intermediate level in a pyramid method; (3) computing the

real Euclidean distance and updating “so far” d
2
min, d

2
v, min

again if current codeword is a better-matched one.

TABLE 1

COMPARISON OF TOTAL COMPUTATIONAL BURDEN PER INPUT VECTOR

Size Method Operation Lena F-16 Pepper Baboon

Add 7936 7936 7936 7936

Mul 4096 4096 4096 4096

Full

search

CMP 256 256 256 256

Add 514.0 494.3 591.7 1706.0

Mul 290.0 277.7 333.4 953.5

EEENNS

CMP 73.1 68.1 82.2 208.0

Add 424.0 353.0 463.0 1199.5

Mul 235.6 197.2 257.8 664.9

4-PM

man

pyramid CMP 54.2 48.3 59.5 137.3

Add 358.5 297.8 392.0 1038.9

Mul 125.1 105.5 136.4 347.5

256

2-PM

sum

pyramid CMP 66.0 58.0 72.7 179.2

Add 15872 15872 15872 15872

Mul 8192 8192 8192 8192

Full

search

CMP 512 512 512 512

Add 896.0 909.2 1104.5 3338.4

Mul 505.3 510.3 621.6 1864.9

EEENNS

CMP 122.6 119.3 146.7 399.4

Add 682.5 606.3 807.6 2283.9

Mul 380.8 339.4 450.6 1267.0

4-PM

mean

pyramid CMP 87.2 80.5 101.7 258.1

Add 556.9 497.2 661.9 1968.0

Mul 191.7 172.2 226.4 652.6

512

2-PM

sum

pyramid CMP 106.1 97.8 125.1 340.0

Add 31744 31744 31744 31744

Mul 16384 16384 16384 16384

Full

search

CMP 1024 1024 1024 1024

Add 1425.5 1670.0 1985.9 6372.7

Mul 806.9 937.5 1120.0 3560.4

EEENNS

CMP 197.3 214.0 263.2 757.0

Add 1032.5 1038.7 1389.0 4099.4

Mul 580.9 584.5 779.5 2283.9

4-PM

mean

pyramid CMP 138.2 139.3 179.0 477.4

Add 820.3 826.0 1104.8 3450.2

Mul 282.1 283.7 376.3 1144.4

1024

2-PM

sum

pyramid CMP 166.2 168.7 218.4 623.0

From TABLE 1, it is obvious that the total computational

burden by using a 2-PM sum pyramid is much less

compared to other previous works, especially the number of

multiplication () operations can be reduced greatly. This

benefit mainly comes from recursively computing d
2
s,v(I, Ci)

for v [1~u2] by using Eq.6.

5. CONCLUSIONS

In this paper, a memory-efficient storing way and a recursive

computation way for Euclidean distance at each level are

proposed based on a 2-PM sum pyramid. Two advantages

are achieved. First, memory redundancy in a 2-PM sum

pyramid is completely removed by just storing the odd terms

at each level. As a result, n n memories are sufficient in total

for exactly representing an n n dimensional block. Second,

total computational burden is reduced to about half by

recursively computing Euclidean distance at each level

compared to directly computing it according to its definition.

As a result, it can completely avoid any waste to the obtained

Euclidean distance at previous levels. This is in fact a

physical realization of the multi-resolution concept by using

a 2-PM sum pyramid. Meanwhile, It is also interesting to see

that a 4-PM mean pyramid cannot benefit from a recursive

computation because unlike the formula a
2
+b

2
= (a+b)

2
2ab

that can save once multiplication () when the value of

(a+b)
2
 term is known, the formula a

2
+b

2
+c

2
+d

2
=(a+b+c+d)

2

2ab 2ac 2ad 2bc 2bd 2cd cannot reduce computational

burden at all even though the value of (a+b+c+d)
2
 term is

known. The proposed method is very promising and

practical to fast VQ encoding.

6. REFERENCES

[1] N.M.Nasarabadi and R.A.King, “Image coding using
vector quantization: A review,” IEEE Trans. Commun.,
vol. 36, pp.957-971, Aug. 1988.

[2] L.Guan and M.Kamel, “Equal-average hyperplane
partitioning method for vector quantization of image
data,” Pattern Recognition Letters, vol.13, pp.693-699,
Oct. 1992.

[3] S.Baek B.Jeon and K.Sung, “A fast encoding algorithm
for vector quantization,” IEEE Signal Processing Letters,
vol.4, pp.325-327, Dec. 1997.

[4] Z.M.Lu and S.H.Sun, “Equal-average equal-variance
equal-norm nearest neighbor search algorithm for
vector quantization,” IEICE Trans. Information and
System, vol.E86-D, pp.660-663, March 2003.

[5] C.H.Lee and L.H.Chen, “A fast search algorithm for
vector quantization using mean pyramids of
codewords,” IEEE Trans. Commun., vol.43, pp.1697
-1702, Feb. 1995.

[6] S.J.Lin, K.L.Chung and L.C.Chang, “An improved
search algorithm for vector quantization using mean
pyramid structure,” Pattern Recognition Letters, vol.22,
pp.373-379, 2001.

[7] Z.Pan, K.Kotani and T.Ohmi, “A fast encoding method
for vector quantization based on 2-pixel-merging sum
pyramid data structure,” IEICE Trans. Fundamentals,
vol.E86-A, pp.2419-2423, Sep. 2003.

[8] T.Nozawa, M.Konda, M.Fujibayashi, M.Imai, K.Kotani,
S.Sugawa and T.Ohmi, “A parallel vector-quantization
processor eliminating redundant calculations for
real-time motion picture compression,” IEEE J.
Solid-State Circuits, vol.35, pp.1744-1751, Nov. 2000.

III - 672

➡ ➠

