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ABSTRACT

Vector quantization (VQ) is a famous signal compression 

method. In a framework of VQ encoding, the fast search 

method for finding the best-matched codeword (winner) is a 

key issue because it is the time bottleneck for practical 

applications. To speed up VQ encoding process, some fast 

search methods that are based on the concept of 

multi-resolutions by introducing a pyramid data structure 

have already been proposed in previous works [5]-[7]. 

However, there still exist two serious problems in them. First, 

they need a lot of extra memories for storing all purposely- 

constructed intermediate levels in a pyramid, which becomes 

an overhead of memory. Second, they completely discard 

the obtained Euclidean distance that has already been 

computed at an intermediate level whenever a rejection test 

fails at this level during a search process, which becomes an 

overhead of computation. 

In order to solve the overhead problems of both memory 

and computation as described above, this paper proposes a 

memory-efficient storing way for a vector and a recursive 

computation way for Euclidean distance level by level based 

on a 2-pixel-merging (2-PM) sum pyramid, which can 

thoroughly reuse the obtained value of Euclidean distance at 

any level to compute the next rejection test condition at a 

successive level. Mathematically, this method does not need 

any extra memories at all and can reduce the original 

computational burden that is needed in a conventional 

non-recursive computation way to about half at each level. 

Experimental results confirmed that the proposed method 

outperforms the previous works obviously. 

1. INTRODUCTION 

In conventional VQ [1] method, an N N image to be 

encoded is firstly divided into a series of non-overlapping 

smaller n n image blocks. Then VQ encoding is 

implemented block by block sequentially. The distortion 

between an input image block and a codeword can be 

measured by squared Euclidean distance for simplicity as 

                                             (1) 

where I is the current image block, Ci is the i
th
 codeword, j 

represents the j
th
 element of a vector, k (=n n) is the vector 

dimension and Ncis the codebook size.  

  Thus, a best-matched codeword (winner) with minimum 

distortion can be determined straightforwardly by 

                                           (2) 

where Cw means winner and subscript “w” is the index of 

winner. This process for finding winner is called a full search 

(FS). Once “w” has been found, which uses much less bits 

than Cw, VQ only transmits this index “w” instead of Cw to 

reduce data amount for the image compression. Because the 

same codebook has also been stored at the receiver, by using 

the received index “w”, it is very easy to reconstruct an 

image by pasting the corresponding codword one by one. 

Obviously, the principle of VQ encoding implies that only 

the sole winner Cw has to be found by an exact Euclidean 

distance computation but all other Ci (i w) has to be rejected 

actually. This means that an exact Euclidean distance for Ci

(i w) is unnecessary. Instead, it is sufficient to just know 

whether Euclidean distance from I to Ci (i w) is “larger” 

than the minimum Euclidean distance from I to Cw or not. In 

other words, VQ encoding can also be viewed as a process 

for rejecting all non best-matched codewords rather than 

finding a best-matched codeword. This property of VQ 

provides a possibility of roughly computing or estimating 

Euclidean distance to see whether it is really “larger” so as to 

make a codeword rejection.  

Because the high dimension k of a vector is the main 

problem for computing Euclidean distance in VQ, it is very 

important to firstly use appropriate low dimensional features 

to approximately express a vector and then to roughly 

compute Euclidean distance between two vectors based on 

them for a rejection. One class of methods [2]-[4] is based on 

using the scalar statistical features of a vector (i.e. L1 norm, 

the variance and L2 norm). Another class of methods [5]-[7] 

is based on the multi-resolution concept by introducing an 

appropriate pyramid data structure to describe an original 

vector with a series of low dimensional intermediate levels. 

Both of them are very search-efficient but they suffer from 

the overhead problems of memory and computation. This 

paper aims at improving the methods proposed in [5]-[7] and 

completely overcoming the two overhead problems.

2. RELATED PREVIOUS WORKS 

During a winner search process, suppose the “so far” 

minimum Euclidean distance is dmin. Based on statistical 

features of a vector, the previous work [2] proposed a 

rejection rule as: If                 holds, then reject Ci

safely, where MI is the mean of an input image block I and 

MCi means the same for Ci. This is the famous ENNS 

method. Then, the previous work [3] proposed a 
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supplementary rejection rule when ENNS method fails as: If 

holds, then reject Ci safely as 

well, where VI is the variance of I and VCi means the same 

for Ci. This is the famous EENNS method. To improve [3] 

further, the previous work [4] proposed another additional 

codeword rejection rule when EENNS method also fails as: 

If                 holds, then reject Ci safely as well, 

where L2I is the L2 norm of I and L2Ci means the same for Ci.

This is EEENNS method (i.e. equal-average equal-variance 

equal-norm nearest neighbor search). EEENNS method is 

the current fastest search method by using statistical features 

of a vector. But EEENNS method cannot avoid the overhead 

of three extra memories for storing the mean, the variance 

and L2 norm of each Ci. Furthermore, if any one of these 

three rejection tests in EEENNS method fails, the overhead 

of computation inevitably occurs as well.  

 On the other hand, in order to realize a multi-resolution 

description for a vector, a pyramid data structure can be 

taken into account naturally. Then, a 4-PM mean pyramid as 

shown in Fig.1 (a) is proposed in the previous works [5], [6]. 

Fig.1. For an n n block, (a) a 4-PM mean pyramid with 

bottom level u1=log4(n n) and (b) a 2-PM sum pyramid 

with bottom level u2=log2(n n)=2 u1. One new level is 

sandwiched in-between every 2 levels of a conventional 

4-PM pyramid (shadowed). All levels above the bottom 

level are called as intermediate levels afterwards. 

Then a hierarchical rejection rule is set up in [5], [6] as 

(3)

Suppose MIv, m is the m
th

pixel (the mean after roundoff) at 

the v
th
 level in a 4-PM mean pyramid for I and MCi,v, m

implies the same thing to Ci for m [1~4
v
], then Euclidean 

distance at the v
th
 level for v [0~u1] between the two 4-PM 

mean pyramids is                         , where the 

real Euclidean distance at the bottom level Lu1 can be 

obtained by d
2
(I, Ci)=d

2
m, u1(I, Ci). For a 4 4 block, u1=2. 

Thus, at any v
th
 level for v [0~u1], if 4

u1 v
d

2
m,v(I, Ci)

>d
2
min holds, then the current real Euclidean distance d

2
m, u1(I, 

Ci) is definitely larger than d
2
min. As a result, the search can 

be terminated at this v
th
 level and Ci can be rejected safely. 

Originally, this 4-PM mean pyramid is used for a 

progressive image transmission starting from the top level. If 

the transmission can be terminated before it reaches the 

bottom Lu1 level by a practical requirement at the receiver, 

image compression can be realized because the transmitted 

maximum data amount so far will be (1+4
1
+4

2
+…

+4
u1 1

)=(4
u1

1)/3=(k 1)/3. Obviously, two constraints exist 

in constructing a pyramid for image transmission. First, it 

must guarantee each pixel value is an integer and in [0, 255] 

interval for a 8-bit displaying. Second, it must keep the 

aspect ratio of a 2-dimensional image to be constant in order 

to show it correctly. Therefore, the averaging, the roundoff 

operation and 2 2 pixel merging way are required. 

  This 4-PM mean pyramid method needs (1+4
1
+4

2
+ … 

+4
u1 1

) extra memories to store all intermediate levels for 

each Ci. it is much more than the overhead of memory in 

EEENNS method. Obviously, if a rejection test fails at a 

certain level, the overhead of computation will inevitably 

occurs as well. This is because when a test fails at the v
th

level, the obtained Euclidean distance 4
u1 v

d
2
m,v(I, Ci) is 

discarded completely and then 4
u1 (v+1)

d
2
m,v+1(I, Ci) is 

computed again for next rejection test at the (v+1)
th
 level. 

This is surly a waste of computation.  

To use multi-resolution concept more effectively, it is 

surely better to construct more levels in a pyramid. In order 

to improve the 4-PM mean pyramid, a 2-PM sum pyramid 

[7] is proposed as shown in Fig.1 (b), which can completely 

remove away the two constraints for constructing a pyramid 

for image transmission and double the resolutions in a 

pyramid. However, the final distortion measurement adopted 

in [7] is Manhattan distance. This paper tries to exploit the 

power of the 2-PM sum pyramid proposed in [7] further by 

introducing Euclidean distance and meanwhile completely 

avoiding the overhead of memory and computation. 

3. PROPOSED METHOD

The advantages of directly using a 2-PM sum pyramid 
compared to a 4-PM mean pyramid are: (1) exact for 
operations in integer form; (2) doubled number of 
intermediate levels for an easier rejection; (3) lighter on-line 
computational burden for constructing the pyramid of an 
input I. Accordingly, its disadvantages are: (1) more extra 
memories; (2) probably more overhead of computation.  

The first two advantages are obvious. An analysis on the 
third advantage is given below. It is lighter to construct a 
2-PM sum pyramid because it needs (2

u2 1
+…+2

2
 +2

1
+1) 

=2
u2

1=n n 1 addition ( ). In contrast, a 4-PM mean 
pyramid needs (4 1) (4

u1 1
+……+4

2
 +4

1
+1)=4

u1
1=n n 1

addition ( ), (4
u1 1

+…+4
2
 +4

1
+1)=(n n 1)/3 division ( ) for 

averaging and (4
u1 1

+…+4
2
 +4

1
+1)=(n n 1)/3 truncating 

operations for converting the mean from a real to an integer. 
Regarding disadvantage of memory, it needs (2

u2 1
+…+2

2

+2
1
+1)=2

u2
1=n n 1 extra memories for a 2-PM sum 

pyramid but just (4
u1 1

+…+4
2
 +4

1
+1)=(n n 1)/3 extra 

memories for a 4-PM mean pyramid. In addition, a 2-PM 
sum pyramid has to use a longer [8+(u2 v)] bit memory unit 
at the v

th
 level for v [0~u2] while a 4-PM mean pyramid 

always uses 8-bit one for all levels. But this will not cause 
any problem for a 32-bit general-purpose computer. 

Similar to Eq.3, a new hierarchical rejection rule can be 

got using Euclidean distance and a 2-PM sum pyramid as 

(4)

where Euclidean distance at the v
th
 level for v [0~u2] 

is                        , SIv, m is the m
th

pixel at the 

v
th
 level for I and SCi,v, m means the same to Ci for m [1~2

v
].
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The real Euclidean distance at the bottom level Lu2 can be 

obtained by d
2
(I, Ci)=d

2
s,u2(I, Ci). For a 4 4 block, u2=4. 

Thus, at any v
th
 level for v [0~u2], if 2

(u2 v)
d

2
s,v(I, Ci)

>d
2
min holds, then the current real Euclidean distance d

2
s,u2(I, 

Ci) is definitely larger than d
2
min. As a result, the search can 

be terminated at this v
th
 level and Ci can be rejected safely. 

Proof of Eq.4
 From a 2-PM sum pyramid shown in Fig.1 (b), it is clear 

that                    and 

are true for m [1~2
v
]. By using (a

2
+b

2
) (a+b)

2
/2, we have 

  Because the initial distance computation is d
2
s,0(I, Ci) and 

totally (u2+1) levels are available, Eq.4 can be easily 

achieved by using the relation d
2
s,v+1(I, Ci) 2

1
d

2
s,v(I, Ci). 

 Comparing Eq.4 with Eq.3, it is obvious that Eq.4 has 

doubled the number of rejection tests for a codeword. If Eq.4 

is directly used, it also needs (n n 1) extra memories for 

each Ci. And when a test at the v
th
 level fails, the obtained 

d
2
s,v(I, Ci) is discarded completely and d

2
s,v+1(I, Ci) must be 

computed again. Eq.4 also has two overhead problems. 

  Therefore, we firstly discuss how to store a 2-PM sum 

pyramid in a memory-efficient way. In fact, it is unnecessary 

to store all pixels at each level because a lot of redundancies 

exist in them. From                    , it achieves 

                   . This means that an even term is not 

independent and it can be obtained on-line by using previous 

SIv,m and a odd term to avoid a storage. For Ci, it is the same. 

Thus, only the odd terms at the v
th
 level for v [0~u2] must 

be stored. Then, d
2
s,v+1(I, Ci) becomes 

(5)

 Based on Eq.5, it is only necessary to store             

                  for I. Therefore, (1+2
0
 +2

1
+…+2

u2 1
)

=2
u2

=n n memories in total are sufficient for storing a 2-PM 

sum pyramid of input I. It can save (n n 1) extra memories 

needed in a direct storing way. For Ci, it is the same. This 

result actually reflects the requirement of information theory 

that states n n memories should be sufficient for storing n n

dependent elements of a vector. Regarding computational 

burden using Eq.5, because all           must be known 

already for m [1~2
v
] after the d

2
s,v(I, Ci) check failed and the 

                 is computed first, Eq.5 only needs 

(3 2
v
)+(2

v
1)=2

v+2
1 addition ( ), 2 2

v
=2

v+1
 multiplication 

( ) operations. In contrast, a direct computation way using 

the definition of d
2
s,v+1(I, Ci) needs (2

v+1
)+(2

v+1
1) =2

v+2
1

additions ( ) and 2
v+1

 multiplications ( ). Obviously, Eq.5 

does not introduce any extra computational burden.   

Secondly, we discuss how to reuse the obtained d
2
s,v(I, Ci)

to compute d
2
s,v+1(I, Ci) recursively in order to reduce more 

computational burden further. A recursive computation way 

is proposed by using (a
2
+b

2
)=(a+b)

2
2ab as 

(6)

From Eq.6 it is obvious that d
2
s,v(I, Ci) is completely 

reused again so that d
2
s,v+1(I, Ci) can be computed recursively. 

Eq.6 is actually a realization of the multi-resolution concept, 

which implies that any higher resolution can be obtained by 

just adding some improvements recursively into a lower 

resolution rather than computing it from the very beginning 

once again. Eq.6 only needs [2 2
v
+(2

v
1)+2] =(3/4) 2

v+2
+1 

addition ( ) (Note: the factor “2” in Eq.6 is realized by 1 ( )

instead of 1 ( ) operation) and 2
v
=(1/2) 2

v+1
 multiplication 

( ) operations. And the initial check at L 0 level needs 1 ( )

and 1 ( ) operation. Because a multiplication ( ) is heaviest, 

Eq.6 can save about half of the computational burden further 

compared to Eq.5 or a direct way of computing d
2
s,v+1(I, Ci).  

Based on the discussions above, a search flow can be 

summarized as follows: (1) Construct an accompanying 

2-PM sum pyramid for each Ci off-line. Only store the odd 

terms but the even terms for v [0~u2] levels (2) Sort all 

codewords by the real sum at L0 level in ascending order 

off-line. (3) For an input I, construct its accompanying 2-PM 

sum pyramid on-line. Similarly, only store the odd terms but 

the even terms for v [0~u2] levels. (4) Find an initial nearest 

(NN) codeword CN among the sorted codewords by using a 

binary search, which is the closest codeword in terms of real 

sum difference                      being minimum. 

It needs log2(Nc) times comparisons (CMP). Then compute 

and temporally store “so far”               , d
2
v, min=

2
u2 v

d
2
min in order to simplify a future rejection test at the v

th

level for v [0~u2 1]. This step needs (2k 1) additions ( )

and (k+u2) multiplications ( ) operations. (5.1) Continue the 

winner search up and down around CN one by one. Once 

                 holds, terminate search for the upper 

part of sorted codebook when i<N or the lower part when 

i>N; If winner search in both upper and lower directions has 

been terminated, search is complete. Clearly, the current “so 

far” best-matched codeword must be the winner. Then 

search flow returns to Step 3 for encoding another new input. 

(5.2) Otherwise, test whether              is true or not 

for v [1~u2]. If it is true, reject Ci safely. (Note, Eq.6 must 

be introduced here for computing d
2
s,v(I, Ci) recursively.) (6) 

If all tests fail for a rejection, it implies that current Ci is a 
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better-matched codeword, then update d
2
min by d

2
s, u2(I, Ci)

and all d
2
v, min for v [0~u2 1] again. Meanwhile, update the 

corresponding winner index “so far”. Then, return to Step 

(5.1) to test next codeword.  

4. EXPERIMENTAL RESULTS

To compare the search performance with previous works, 

simulation experiments using MATLAB are conducted. 

Codebooks of size 256, 512 and 1024 are generated using 

512 512, 8-bit Lena image as a training set based on [8]. 

Block size is 4 4. Search efficiency is evaluated by total 

computational burden in terms of the number of addition ( ), 

multiplication ( ) and comparison (CMP) operations per 

input vector, which consists of (1) finding the initial 

best-matched codeword CN and computing the initial d
2
min,

d
2
v, min ; (2) computing test condition for a possible rejection 

using each statistical feature in EEENNS method or each 

intermediate level in a pyramid method; (3) computing the 

real Euclidean distance and updating “so far” d
2
min, d

2
v, min

again if current codeword is a better-matched one.  

TABLE 1   

COMPARISON OF TOTAL COMPUTATIONAL BURDEN PER INPUT VECTOR 

Size Method Operation Lena F-16 Pepper Baboon

Add 7936 7936 7936 7936 

Mul 4096 4096 4096 4096 

Full 

search 

CMP 256 256 256 256 

Add 514.0 494.3 591.7 1706.0 

Mul 290.0 277.7 333.4 953.5 

EEENNS 

CMP 73.1 68.1 82.2 208.0 

Add 424.0 353.0 463.0 1199.5 

Mul 235.6 197.2 257.8 664.9 

4-PM 

man

pyramid CMP 54.2 48.3 59.5 137.3 

Add 358.5 297.8 392.0 1038.9 

Mul 125.1 105.5 136.4 347.5 

256 

2-PM 

sum

pyramid CMP 66.0 58.0 72.7 179.2 

Add 15872 15872 15872 15872 

Mul 8192 8192 8192 8192 

Full 

search 

CMP 512 512 512 512 

Add 896.0 909.2 1104.5 3338.4 

Mul 505.3 510.3 621.6 1864.9 

EEENNS 

CMP 122.6 119.3 146.7 399.4 

Add 682.5 606.3 807.6 2283.9 

Mul 380.8 339.4 450.6 1267.0 

4-PM 

mean

pyramid CMP 87.2 80.5 101.7 258.1 

Add 556.9 497.2 661.9 1968.0 

Mul 191.7 172.2 226.4 652.6 

512 

2-PM 

sum

pyramid CMP 106.1 97.8 125.1 340.0 

Add 31744 31744 31744 31744 

Mul 16384 16384 16384 16384 

Full 

search 

CMP 1024 1024 1024 1024 

Add 1425.5 1670.0 1985.9 6372.7 

Mul 806.9 937.5 1120.0 3560.4 

EEENNS 

CMP 197.3 214.0 263.2 757.0 

Add 1032.5 1038.7 1389.0 4099.4 

Mul 580.9 584.5 779.5 2283.9 

4-PM 

mean

pyramid CMP 138.2 139.3 179.0 477.4 

Add 820.3 826.0 1104.8 3450.2 

Mul 282.1 283.7 376.3 1144.4 

1024 

2-PM 

sum

pyramid CMP 166.2 168.7 218.4 623.0 

From TABLE 1, it is obvious that the total computational 

burden by using a 2-PM sum pyramid is much less 

compared to other previous works, especially the number of 

multiplication ( ) operations can be reduced greatly. This 

benefit mainly comes from recursively computing d
2
s,v(I, Ci)

for v [1~u2] by using Eq.6. 

5. CONCLUSIONS

In this paper, a memory-efficient storing way and a recursive 

computation way for Euclidean distance at each level are 

proposed based on a 2-PM sum pyramid. Two advantages 

are achieved. First, memory redundancy in a 2-PM sum 

pyramid is completely removed by just storing the odd terms 

at each level. As a result, n n memories are sufficient in total 

for exactly representing an n n dimensional block. Second, 

total computational burden is reduced to about half by 

recursively computing Euclidean distance at each level 

compared to directly computing it according to its definition. 

As a result, it can completely avoid any waste to the obtained 

Euclidean distance at previous levels. This is in fact a 

physical realization of the multi-resolution concept by using 

a 2-PM sum pyramid. Meanwhile, It is also interesting to see 

that a 4-PM mean pyramid cannot benefit from a recursive 

computation because unlike the formula a
2
+b

2
= (a+b)

2
2ab

that can save once multiplication ( ) when the value of 

(a+b)
2
 term is known, the formula a

2
+b

2
+c

2
+d

2
=(a+b+c+d)

2

2ab 2ac 2ad 2bc 2bd 2cd cannot reduce computational 

burden at all even though the value of (a+b+c+d)
2
 term is 

known. The proposed method is very promising and 

practical to fast VQ encoding. 
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