<

0-7803-8484-9/04/$20.00 ©2004 IEEE

A MEMORY-EFFICIENT FAST ENCODING METHOD FOR VECTOR
QUANTIZATION USING 2-PIXEL-MERGING SUM PYRAMID

Zhibin Panl), Koji Kotaniz), and Tadahiro Ohmi"

1) New Industry Creation Hatchery Center, Tohoku University, Japan
2) Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Japan
Aza-aoba 05, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
E-mail: pzb@ftf.niche.tohoku.ac.jp

ABSTRACT

Vector quantization (VQ) is a famous signal compression
method. In a framework of VQ encoding, the fast search
method for finding the best-matched codeword (winner) is a
key issue because it is the time bottleneck for practical
applications. To speed up VQ encoding process, some fast
search methods that are based on the concept of
multi-resolutions by introducing a pyramid data structure
have already been proposed in previous works [5]-{7].
However, there still exist two serious problems in them. First,
they need a lot of extra memories for storing all purposely-
constructed intermediate levels in a pyramid, which becomes
an overhead of memory. Second, they completely discard
the obtained Euclidean distance that has already been
computed at an intermediate level whenever a rejection test
fails at this level during a search process, which becomes an
overhead of computation.

In order to solve the overhead problems of both memory
and computation as described above, this paper proposes a
memory-efficient storing way for a vector and a recursive
computation way for Euclidean distance level by level based
on a 2-pixel-merging (2-PM) sum pyramid, which can
thoroughly reuse the obtained value of Euclidean distance at
any level to compute the next rejection test condition at a
successive level. Mathematically, this method does not need
any extra memories at all and can reduce the original
computational burden that is needed in a conventional
non-recursive computation way to about half at each level.
Experimental results confirmed that the proposed method
outperforms the previous works obviously.

1. INTRODUCTION

In conventional VQ [1] method, an NxN image to be
encoded is firstly divided into a series of non-overlapping
smaller nxn image blocks. Then VQ encoding is
implemented block by block sequentially. The distortion
between an input image block and a codeword can be
measured by squared Euclidean distance for simplicity as

k
d(1c)=Y(1,-c,} i=12N, (1)
=

where I is the current image block, C; is the it codeword, j
represents the j™ element of a vector, k (=nxn) is the vector
dimension and N is the codebook size.

Thus, a best-matched codeword (winner) with minimum
distortion can be determined straightforwardly by

I - 669

¢

d*(I C,)=min|d’(I C)| i=12,-,N 2

where C,, means winner and subscript “w” is the index of
winner. This process for finding winner is called a full search
(FS). Once “w” has been found, which uses much less bits
than C,,, VQ only transmits this index “w” instead of C,, to
reduce data amount for the image compression. Because the
same codebook has also been stored at the receiver, by using
the received index “w”, it is very easy to reconstruct an
image by pasting the corresponding codword one by one.

Obviously, the principle of VQ encoding implies that only
the sole winner Cy, has to be found by an exact Euclidean
distance computation but all other C; (i#w) has to be rejected
actually. This means that an exact Euclidean distance for C;
(i#w) is unnecessary. Instead, it is sufficient to just know
whether Euclidean distance from I to C; (i#w) is “larger”
than the minimum Euclidean distance from I to C,, or not. In
other words, VQ encoding can also be viewed as a process
for rejecting all non best-matched codewords rather than
finding a best-matched codeword. This property of VQ
provides a possibility of roughly computing or estimating
Euclidean distance to see whether it is really “larger” so as to
make a codeword rejection.

Because the high dimension k of a vector is the main
problem for computing Euclidean distance in VQ, it is very
important to firstly use appropriate low dimensional features
to approximately express a vector and then to roughly
compute Euclidean distance between two vectors based on
them for a rejection. One class of methods [2]-[4] is based on
using the scalar statistical features of a vector (i.e. L; norm,
the variance and L, norm). Another class of methods [5]-[7]
is based on the multi-resolution concept by introducing an
appropriate pyramid data structure to describe an original
vector with a series of low dimensional intermediate levels.
Both of them are very search-efficient but they suffer from
the overhead problems of memory and computation. This
paper aims at improving the methods proposed in [5]-[7] and
completely overcoming the two overhead problems.

2. RELATED PREVIOUS WORKS

During a winner search process, suppose the “so far”
minimum Euclidean distance is d;, Based on statistical
features of a vector, the previous work [2] proposed a
rejection rule as: If k(MI — MC,) > d?, holds, then reject C;
safely, where MI is the mean of an input image block I and
MC; means the same for C;. This is the famous ENNS

method. Then, the previous work [3] proposed a

ICASSP 2004

supplementary rejection rule when ENNS method fails as: If
k(MI - MC,) +(VI-VC,) > d2, holds, then reject C; safely as

well, where VI is the variance of I and VC; means the same
for C;. This is the famous EENNS method. To improve [3]
further, the previous work [4] proposed another additional
codeword rejection rule when EENNS method also fails as:
If (L,/-L,C,} >d2, holds, then reject C; safely as well,

where Ll is the L, norm of I and L,C; means the same for C;.

This is EEENNS method (i.e. equal-average equal-variance
equal-norm nearest neighbor search). EEENNS method is
the current fastest search method by using statistical features
of a vector. But EEENNS method cannot avoid the overhead
of three extra memories for storing the mean, the variance
and L, norm of each C;. Furthermore, if any one of these
three rejection tests in EEENNS method fails, the overhead
of computation inevitably occurs as well.

On the other hand, in order to realize a multi-resolution
description for a vector, a pyramid data structure can be
taken into account naturally. Then, a 4-PM mean pyramid as
shown in Fig.1 (a) is proposed in the previous works [5], [6].

~

$
g§

LID
(top level)
'

-
L

P Averaging &

L, Summing

-
L, L,
(bottom level) (bottom level)

(@- ®)

N S L o)

Fig.1. For an nxn block, (a) a 4-PM mean pyramid with
bottom level ul=logy(nxn) and (b) a 2-PM sum pyramid
with bottom level u2=log,(nxn)=2xul. One new level is
sandwiched in-between every 2 levels of a conventional
4-PM pyramid (shadowed). All levels above the bottom
level are called as intermediate levels afterwards.

Then a hierarchical rejection rule is set up in [5], [6] as
dl (1,C)z--24""d} (1,C)=
s> 4“Hd,i~|(1,C1) >4"d2 (1,C)

Suppose M, , is the m" pixel (the mean after roundoff) at
the v* level in a 4-PM mean pyramid for I and MCjy,
implies the same thing to C; for me[1~4"], then Buclidean
distance at the v™ level for ve[0~ul] between the two 4-PM
mean pyramids is o2 (7,¢,) = > (M1, -mc,,,), where the
real Euclidean distance at the bottom level L, can be
obtained by d*(I, C;)=d’y, ui(I, C)). For a 4x4 block, ul=2.

Thus, at any v" level for ve[0~ul], if 4" dn (1, C)
>d2min holds, then the current real Euclidean distance dzmul(l,
C)) is definitely larger than d’y. As a result, the search can
be terminated at this v"" level and C; can be rejected safely.

Originally, this 4-PM mean pyramid is used for a
progressive image transmission starting from the top level. If
the transmission can be terminated before it reaches the
bottom L,; level by a practical requirement at the receiver,
image compression can be realized because the transmitted
maximum data amount so far will be (1+4'+4%+...
4" H=(4"-1)/3=(k-1)/3. Obviously, two constraints exist

©)

in constructing a pyramid for image transmission. First, it
must guarantee each pixel value is an integer and in [0, 255]
interval for a 8-bit displaying. Second, it must keep the
aspect ratio of a 2-dimensional image to be constant in order
to show it correctly. Therefore, the averaging, the roundoff
operation and 2x2 pixel merging way are required.

This 4-PM mean pyramid method needs (1+4'+4%+ ...
+4""") extra memories to store all intermediate levels for
each C.. it is much more than the overhead of memory in
EEENNS method. Obviously, if a rejection test fails at a
certain level, the overhead of computation will inevitably
occurs as well. This is because when a test fails at the v
level, the obtained Euclidean distance 4" “d*,(1, C)) is
discarded completely and then 4“"“Vd% (1, C) is
computed again for next rejection test at the (v+1)th level.
This is surly a waste of computation.

To use multi-resolution concept more effectively, it is
surely better to construct more levels in a pyramid. In order
to improve the 4-PM mean pyramid, a 2-PM sum pyramid
[7] is proposed as shown in Fig.1 (b), which can completely
remove away the two constraints for constructing a pyramid
for image transmission and double the resolutions in a
pyramid. However, the final distortion measurement adopted
in [7] is Manhattan distance. This paper tries to exploit the
power of the 2-PM sum pyramid proposed in [7] further by
introducing Euclidean distance and meanwhile completely
avoiding the overhead of memory and computation.

3. PROPOSED METHOD

The advantages of directly using a 2-PM sum pyramid
compared to a 4-PM mean pyramid are: (1) exact for
operations in integer form; (2) doubled number of
intermediate levels for an easier rejection; (3) lighter on-line
computational burden for constructing the pyramid of an
input I. Accordingly, its disadvantages are: (1) more extra
memories; (2) probably more overhead of computation.

The first two advantages are obvious. An analysis on the
third advantage is given below. It is lighter to construct a
2-PM sum pyramid because it needs (2" +...+2% +2'+1)
=2"_]=nxn-1 addition (+). In contrast, a 4-PM mean
pyramid needs g4—1)><(4“1_1+ 47 +441)=4" - 1=nxn-1
addition (£), (4" +.. +4* +4'+1)=(nxn—1)/3 division (<) for
averaging and (4"7+...+4° +4'+1)=(nxn—1)/3 truncating
operations for converting the mean from a real to an integer.
Regardjng disadvantage of memory, it needs (2" '+.. +2
+2M4+1)=2"~1=nxn—1 extra memories for a 2-PM sum
pyramid but just (4" 7'+..+4% +4'+1)=(nxn-1)3 extra
memories for a 4-PM mean pyramid. In addition, a 2-PM
sum pyramid has to use a longer [8+u2—-v)] bit memory unit
at the v" level for ve[0~u2] while a 4-PM mean pyramid
always uses 8-bit one for all levels. But this will not cause
any problem for a 32-bit general-purpose computer.

Similar to Eq.3, a new hierarchical rejection rule can be
got using Euclidean distance and a 2-PM sum pyramid as

7, (1,C) 2227} (1,C) > 4)
227 g2 (1,02 27 d? (1,C,) (
where Euclidean distance at the v level for ve[0~u2]

is djy([,c,)oi 221(51 -sc,,,f> Sk,m is the mmpixel at the
v level for I and SCiy, m means the same to C; for me [1~2".

I - 670

The real Euclidean distance at the bottom level L, can be
obtained by d*(I, Cy)=d’ (1, C;). For a 4x4 block, u2=4.

Thus, at any v level for ve[0~u2], if 2% Vd%, (1, C)
>d i holds, then the current real Euclidean distance dzs,uz(I,
C)) is definitely larger than dZmin. As a result, the search can
be terminated at this v level and C; can be rejected safely.

Proof of Eq.4
From a 2-PM sum pyramid shown in Fig.1 (b), it is clear

that SI\=,m = S]v+1‘2m7] + Slm,zﬂ, and SC,,m = SC[,VH,mel +SCW+1.2W

are true for me[1~2"]. By using (a*+b’)>(a+b)/2, we have

& (1,C) =0 (ST = SC
= Zi‘:] [(Slv+1.2m—1 - SC;‘m‘zm—l)2 + (Slm.m - SC:‘\‘H,Zm)2]
>2" Z::1 [(Slu+1,2m4 - SC;,HI,ZHH)+ (S1\=+l,2m - SCl,v+l,2m)]2

=2" Z::1 [(SIHLZWI + S1V+l.2m)_ (Sci,wl,z,nq + Scl.v+l.2m)]Z

L) 3 S eN |
=27d?,(1,C)

Because the initial distance computation is dzs,oﬂ, C)) and
totally (u2+1) levels are available, Eq4 can be easily
achieved by using the relation dzwﬂ(l, Ci)2271d25,v(l, C).

Comparing Eq.4 with Eq.3, it is obvious that Eq.4 has
doubled the number of rejection tests for a codeword. If Eq.4
is directly used, it also needs (nxn—1) extra memories for
each C;,. And when a test at the v level fails, the obtained
dZS,V(I, C)) is discarded completely and dZS,M(I, C;) must be
computed again. Eq.4 also has two overhead problems.

Therefore, we firstly discuss how to store a 2-PM sum
pyramid in a memory-efficient way. In fact, it is unnecessary
to store all pixels at each level because a lot of redundancies
exist in them. From S, , = SI ., +SI,..,. ,itachieves
SI,oam =8I, ~SI,.,,. - Thismeans that an even term is not
independent and it can be obtained on-line by using previous
Sl and a odd term to avoid a storage. For C;, it is the same.
Thus, only the odd terms at the v™ level for ve[0~u2] must
be stored. Then, d2s,v+1a, C;) becomes

5 Def e
a2 (1,6) = 20 (ST = SCprnf

: 5
= wa [(S[\»l.le - Cz.u+1.2m4)Z + (S[m.z,u - SCI.\’+1.2!H)2] ()

S
= z::| {(SIM,ZVH - SC,.\=~|.2nr71)z + [(SIV‘,W - Slv+1,2m4)’ (SC,,v.m - SC,,M,ZW!)]Z}
= zi::] {(Slm_zm—l - SCLv-l,lm*I)2 + [SIV.M - SC’.VJH)7 (S1\+1,2m—| - Sci,v+|_2m—1)]2}

Based on Eq.5, it is only necessary to store S1,,,, 51, ,,(SL,,, I, ;)

(Slt,z‘,,Sluz‘g,---,Sluz,z,,:fl)for 1. Therefore, (1+20 +2M4.. .+2“271)
=2"=nxn memories in total are sufficient for storing a 2-PM
sum pyramid of input L. It can save (nxn—1) extra memories
needed in a direct storing way. For C;, it is the same. This
result actually reflects the requirement of information theory
that states nxn memories should be sufficient for storing nxn
dependent elements of a vector. Regarding computational
burden using Eq.5, because all (s7,,, - SC,,,, Jmust be known
already for me[1~2"] after the d°,(T, C;) check failed and the
(SI el 2m —SC,..W,.Z,H) is computed first, Eq.5 only needs
(3x2")yH2"-1)=2""2~1 addition (£), 2x2"=2""" multiplication
(x) operations. In contrast, a direct computation way using

the definition of d%, (I, C)) needs (2")y+(2""'-1) =2""*1
additions (+) and 2" multiplications (x). Obviously, Eq.5
does not introduce any extra computational burden.
Secondly, we discuss how to reuse the obtained dzs,,(l, C)
to compute dzs,vﬂ(l, C)) recursively in order to reduce more
computational burden further. A recursive computation way
is proposed by using (a2+b2)=(a+b)2—2ab as
N Def P)
d(1.C) =3 (81, =SC,\0,)
= z::, [(Slwl,zmq - Scwﬂ,:m—!)2 + (S1v+1,2m - Scml,z»n)2]
= Z:,l [(S[m.mfl =S8C, it 2me)Jr (S]m‘z", =8Cirii2m)]Z
—-2x z::l [(S]» +,2m-1 " Scr’,v +1,2m-1 XSIV' 12m Scz.w 1,2m)]
= Z:ZI [Slv.m - SCI.v,m]Z
—2x z;,l [(SIM,ZWI - Scwn.zmq XS]|:~1,2,,, - SCt,erZm)]
= di‘, (,C)-2x z::l {(S]m,zm 1 =8Ct2m 1)X
[(S vom SCl.v,m)7 (SIM.qu - Scrwl.zm—l)]}

©)

From Eq.6 it is obvious that dzs,V(I, C) is completely
reused again so that dzs,wl(l, C)) can be computed recursively.
Eq.6 is actually a realization of the multi-resolution concept,
which implies that any higher resolution can be obtained by
just adding some improvements recursively into a lower
resolution rather than computing it from the very beginning
once again. Eq.6 only needs [2x2"+(2"—11+2] =(3/4)x2"*+1
addition (£) (Note: the factor “2” in Eq.6 is realized by 1 (¥)
instead of 1 (x) operation) and 2'=(1/2)x2""" multiplication
(x) operations. And the initial check at L level needs 1 (+)
and 1 (x) operation. Because a multiplication (x) is heaviest,
Eq.6 can save about half of the computational burden further
compared to Eq.5 or a direct way of computing dzs,vﬂ(I, C).

Based on the discussions above, a search flow can be
summarized as follows: (1) Construct an accompanying
2-PM sum pyramid for each C; off-line. Only store the odd
terms but the even terms for ve[0~u2] levels (2) Sort all
codewords by the real sum at L level in ascending order
off-line. (3) For an input I, construct its accompanying 2-PM
sum pyramid on-line. Similarly, only store the odd terms but
the even terms for ve[0~u2] levels. (4) Find an initial nearest
(NN) codeword Cy among the sorted codewords by using a
binary search, which is the closest codeword in terms of real
sum difference d, ,(1,C,)=|s1,, - SC, ,,| being minimum.
It needs logy(N,) times comparisons (CMP). Then compute
and temporally store “so far” d2, =d*(I,Cy), &’ mi—
2% d?in in order to simplify a future rejection test at the v
level for ve[0~u2—1]. This step needs (2k—1) additions (+)
and (k+u2) multiplications (x) operations. (5.1) Continue the
winner search up and down around Cy one by one. Once
(14, =SC,,F = d; s holds, terminate search for the upper
part of sorted codebook when i<N or the lower part when
>N; If winner search in both upper and lower directions has
been terminated, search is complete. Clearly, the current “so
far” best-matched codeword must be the winner. Then
search flow returns to Step 3 for encoding another new input.
(5.2) Otherwise, test whether 47 (7,C,)2d? ., is true or not
for ve[l~u2]. If it is true, reject C; safely. (Note, Eq.6 must
be introduced here for computing dzs,v(l, C)) recursively.) (6)
If all tests fail for a rejection, it implies that current C; is a

II- 671

better-matched codeword, then update dz,m-n by dzs, o, C)
and all dzv,min for ve[0~u2-1] again. Meanwhile, update the
corresponding winner index “so far”. Then, return to Step
(5.1) to test next codeword.

4. EXPERIMENTAL RESULTS

To compare the search performance with previous works,
simulation experiments using MATLAB are conducted.
Codebooks of size 256, 512 and 1024 are generated using
512x512, 8-bit Lena image as a training set based on [8].
Block size is 4x4. Search efficiency is evaluated by total
computational burden in terms of the number of addition (£),
multiplication (x) and comparison (CMP) operations per
input vector, which consists of (1) finding the initial
best-matched codeword Cy and computing the initial dzmin,
., min; (2) computing test condition for a possible rejection
using each statistical feature in EEENNS method or each
intermediate level in a pyramid method; (3) computin% the
real Euclidean distance and updating “so far” &
again if current codeword is a better-matched one.

mins dv,min

TABLE 1
COMPARISON OF TOTAL COMPUTATIONAL BURDEN PER INPUT VECTOR

Size | Method Operation | Lena F-16 Pepper | Baboon
256 | Full Add 7936 | 7936 | 7936 7936
search Mul 4096 | 4096 | 4096 4096
CMP 256 256 256 256

EEENNS | Add 5140 | 4943 | 5917 | 17060
Mul 2900 | 2777 |3334 | 9535

CMP 73.1 68.1 822 208.0

4-PM Add 440 |3530 | 4630 | 11995
man Mul 2356 | 1972 | 2578 | 6649
pyramid | CMP 542 483 59.5 1373
2-PM Add 3585 | 2978 | 3920 | 10389
sum Mul 1251 | 1055 | 1364 | 3475
pyramid | CMP 66.0 58.0 72.7 1792

512 | Full Add 15872 | 15872 | 15872 | 15872
search Mul 8192 | 8192 | 8192 8192
CMP 512 512 512 512

EEENNS | Add 8960 | 9092 | 11045 | 33384
Mul 5053 | 5103 | 6216 | 18649

CMP 1226 | 1193 | 1467 | 3994

4PM Add 6825 | 6063 | 8076 | 22839
mean Mul 3808 | 3394 | 4506 | 12670
pyramid | CMP 87.2 80.5 1017 | 258.1
2-PM Add 5569 | 4972 | 6619 | 19680
sum Mul 1917 | 1722 | 2264 | 6526
pyramid | CMP 1061 | 978 125.1 340.0
1024 | Full Add 31744 | 31744 | 31744 | 31744
search Mul 16384 | 16384 | 16384 | 16384
CMP 1024 1024 1024 1024

EEENNS | Add 14255 | 16700 | 19859 | 6372.7
Mul 8069 | 9375 | 11200 | 35604

CMP 1973 | 2140 | 2632 | 7570

4-PM Add 1032.5 | 1038.7 | 1389.0 | 4099.4
mean Mul 5809 | 5845 | 7795 | 22839
pyramid | CMP 1382 | 1393 [1790 | 4774
2-PM Add 8203 | 8260 | 11048 | 34502
sum Mul 2821 | 2837 | 3763 11444
pyramid | CMP 1662 | 1687 | 2184 | 623.0

From TABLE 1, it is obvious that the total computational
burden by using a 2-PM sum pyramid is much less
compared to other previous works, especially the number of
multiplication (x) operations can be reduced greatly. This
benefit mainly comes from recursively computing dzs,v(l, C)
for ve[1~u2] by using Eq.6.

5. CONCLUSIONS

In this paper, a memory-efficient storing way and a recursive
computation way for Euclidean distance at each level are
proposed based on a 2-PM sum pyramid. Two advantages
are achieved. First, memory redundancy in a 2-PM sum
pyramid is completely removed by just storing the odd terms
at each level. As a result, nxn memories are sufficient in total
for exactly representing an nxn dimensional block. Second,
total computational burden is reduced to about half by
recursively computing Euclidean distance at each level
compared to directly computing it according to its definition.
As aresult, it can completely avoid any waste to the obtained
Euclidean distance at previous levels. This is in fact a
physical realization of the multi-resolution concept by using
a 2-PM sum pyramid. Meanwhile, It is also interesting to see
that a 4-PM mean pyramid cannot benefit from a recursive
computation because unlike the formula a™tb’= (atb)’—2ab
that can save once multiplication (x) when the value of
(a+b)’ term is known, the formula a*+b™c*+d*=(a+b+c+d)’
—2ab—2ac—2ad —2bc—2bd—2cd cannot reduce computational
burden at all even though the value of (a+b+c+d)2 term is
known. The proposed method is very promising and
practical to fast VQ encoding,

6. REFERENCES

1] N.M.Nasarabadi and R.A King, “Image coding using
vector quantization: A review,” IEEE Trans. Commun.,
vol. 36, pp.957-971, Aug. 1988.

[2] L.Guan and M.Kamel, “Equal-average hyperplane
partitioning method for vector quantization of image
data,” Pattern Recognition Letters, vol.13, pp.693-699,
Oct. 1992.

[3] S.Baek, B.Jeon and K.Sung, “A fast encoding algorithm
for vector quantization,” IEEE Signal Processing Letters,
vol.4, pp.325-327, Dec. 1997.

[4] ZM.Lu and S.H.Sun, “Equal-average equal-variance
equal-norm nearest neighbor search algorithm for
vector quantization,” IEICE Trans. Information and
System, vol.E86-D, pp.660-663, March 2003.

[5] C.H.Lee and L.H.Chen, “A fast search algorithm for
vector quantization using mean pyramids of
codewords,” IEEE Trans. Commun., vol.43, pp.1697
-1702, Feb. 1995.

[6] SJ.Lin, KL.Chung and L.C.Chang, “An improved
search algorithm for vector quantization using mean
pyramid structure,” Pattern Recognition Letters, vol.22,
pp-373-379, 2001.

[7] Z.Pan, K. Kotani and T.Ohmi, “A fast encoding method
for vector quantization based on 2-pixel-merging sum

yramid data structure,” IEICE Trans. Fundamentals,
vol.E86-A, pp.2419-2423, Sep. 2003.

[8] T.Nozawa, M.Konda, M.Fujibayashi, M.Imai, K. Kotani,
S.Sugawa and T.Ohmi, “A parallel vector-quantization
processor eliminating redundant calculations for
real-time motion picture compression,” IEEE J.
Solid-State Circuits, vol.35, pp.1744-1751, Nov. 2000.

I - 672

I 2

