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ABSTRACT

A technique is developed where a wavelet is matched to a 1-D
or 2-D signal, with the goal of increasing coding gain. This is
done by maximizing the projection of the signal onto the scaling
subspace. For 1-D signals, the results show that the scaling sub-
space (low pass) signal closely matches (subjectively and objec-
tively) the original signal. For 2-D signals, the optimized wavelets
give superior coding results when compared with the Daubechies
wavelets. For low compression ratios the PSNR gain is over 1.5
dB. This gain drops off at higher compression ratios, possibly
due to the lower number of vanishing moments in the optimized
wavelets.

1. INTRODUCTION

Over the last couple of years, the wavelet transform [1] has been
receiving increased attention from the signal processing commu-
nity, especially in the field of image compression [2]. State-of-the-
art coding algorithms have been implemented to exploit the redun-
dancies inherent in the transform coefficients to produce excellent
results in image compression, e.g. the EZW algorithm [3].

The 1-D wavelet transform is usually implemented by a fil-
ter bank, as shown in figure 1. There have been a vast number of
pre-designed wavelet and scaling functions to be found in the lit-
erature. These functions are independent of what signal is to be
analyzed. Work has been done to develop methods for matching
a signal to a wavelet [4–6]. However all these methods are only
used for the 1-D case, and not specifically for application in signal
compression.

This paper describes a method to match the wavelet to both a
1-D and 2-D signal (e.g. an image) with the aim of increased image
compression performance. We will also study the properties of the
new basis functions matched to these signals.

2. MULTIRESOLUTION DECOMPOSITION AND THE
DISCRETE WAVELET TRANSFORM

In the context of multiresolution analysis, Vj is defined as a sub-
space of L2(R) which spans the scaling function ϕ(2jt − k) for
all k ∈ Z. Wj is defined as the orthogonal compliment of Vj in
Vj+1.

In figure 1, x(n) represents the highest possible resolution
version of a continuous time signal x(t) ∈ L2(R). Hence,
x(n) = cA0(n) ∈ V0 and

x (t) =
∑

k

x (k) ϕ (t − k) (1)

The transform coefficients, cA−1(n) and cD−1(n), represent
the signal x(n) at scale j = −1. In other words, they represent the
projection of x(t) on the scaling subspace, V−1, and the wavelet
subspace, W−1, respectively.

To obtain an even lower resolution version of x(n) as cA−2

and cD−2, the signal cA−1 is passed through the same filter bank
in place of x(n). This leads to the following subspace relationship
for the DWT:

L2(R) = V0 ⊕W−1 ⊕W−2 ⊕W−3 ⊕ · · · (2)

2.1. Necessary Conditions for the Orthogonal DWT

For the multiresolution framework described above to hold, cer-
tain conditions need to be imposed on the orthogonality of both
the scaling function (ϕ(t)), and the wavelet (ψ(t)). These orthog-
onality conditions can be found in [7]. Using the basic recursive
equations for ϕ(t) and ψ(t), the orthogonality relationships can be
written as ∑

k

h0 (k) h0 (k − 2n) = δ (n) (3)

∑
k

h1 (k) h1 (k − 2n) = δ (n) (4)

∑
k

h0 (k) h1 (k − 2n) = 0 (5)

Also from the basic recursive equations, the following can be
derived [7]: ∑

k

h0 (k) =
√

2 (6)

∑
k

h1 (k) = 0 (7)

3. OPTIMIZATION FOR A 1-D SIGNAL

In [6], a method was proposed to match a wavelet to a 1-D signal.
This method had the following errors/limitations:

1. No constraints were placed on the solution to satisfy the
necessary conditions in section 2.1.

2. To avoid a trivial solution to the problem, one of the filter
coefficients of h1 was set to 1.

This section revisits and corrects the procedure of [6] for 1-D sys-
tems, and further develops the technique for 2-D systems in sec-
tion 4.

In order to match a wavelet to a 1-D signal, its projection onto
the Wj subspace should be minimized, which in turn would give
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Fig. 1. Implementation of a single stage wavelet transform using a filter bank.

a maximum projection in Vj . This is desirable for signal com-
pression, where the coefficients in Wj are usually discarded or
coarsely quantized.

Now, in a perfect reconstruction (PR) filter bank, y(n) = x(n)
in figure 1. This PR filter bank can be realized by setting [1]

h1(n) = (−1)(n+1)h0(N − n − 1) (8)

f0(n) = h0(N − n − 1) (9)

f1(n) = h1(N − n − 1) (10)

where N is the length of the filters. Equation (8) also ensures
equation (5) holds.

As stated in section 2, y(n) and x(n) are the highest resolution
versions of the original signal x(t). Let the reconstructed contin-
uous time version of the signal be x̂(t). If y(n) is reconstructed
from only the W−1 subspace coefficients, then

x̂ (t) =
∑

n

cD−1 (n)
1√
2
ψ

(
t

2
− k

)
(11)

The error energy between x(t) (given by equation (1)) and
x̂(t) is given by

E =

∫
e2 (t) dt =

∫
(x (t) − x̂ (t))2 dt (12)

In order to minimize the projection of the signal onto W−1,
the error energy in (12) is to be maximized. This is done by setting
the derivative of E with respect to the filter weights to zero.

dE

dh1(r)
= 0, r = 1, . . . , N (13)

Substituting equations (1) and (11), in (12) and solving (13) with
the orthogonality conditions, gives the following result

∑
m

h1 (m)
∑

n

x (2n − m) x (2n − r) = 0 (14)

where r = 1 . . . N . This result has the form of N linear equation
with N unknowns. However, the solution for h1(n) is constrained
by the non-linear equations (3)-(5) and linear equations (6) and (7).
Hence, this turns out to be a problem of minimizing a linear cost
function (equation (14)) with linear and non-linear constraints.

3.1. Results

The above minimization problem was solved for a given input sig-
nal, x(n) (in figure 2(a)), using a technique Sequential Quadratic
Programming (SQP) [8]. For an initial guess to the solution, the

Daubechies 8 tap high pass filter was used. After obtaining opti-
mal values for h1(n), equations (8)-(10) were used to calculate the
coefficients of the other filter.

Figure 2 shows the decomposition of an audio signal using the
Daubechies 8 tap filter bank, and the optimal filter bank. Clearly
for the case of the Daubechies filter bank, a lot more energy is
present in the cD−1 coefficients than in the optimal filter bank.
This implies that the cA−1 coefficients for the optimal case are
more matched to the signal than for the Daubechies case. This can
also be seen from figure 2.

If the signal is reconstructed by setting all the cD−1 coeffi-
cients to zero for the case the Daubechies filter bank, the Mean
Squared Error (MSE) between the reconstructed and original sig-
nal is 2.647 × 10−6. For the optimal filter bank, reconstruct-
ing the signal with all the cD−1 coefficients equal to zero gives
MSE = 2.868 × 10−7.

4. OPTIMIZATION FOR A 2-D SIGNAL

The wavelet transform applied to a 2-D signal is a simple exten-
sion of the 1-D case, where the filtering operations are performed
along the rows, and then the columns of the signal. Instead of two
subbands as in the 1-D case (cA−1 and cD−1), four subbands are
generated for the 2-D case: LL−1, LH−1, HL−1, and HH−1.
The 2-D scaling function and wavelets can be written as the tensor
products of the corresponding 1-D functions [2]:

ϕ(x, y) = ϕ(x)ϕ(y) (15)

ψH(x, y) = ϕ(x)ψ(y) (16)

ψV (x, y) = ψ(x)ϕ(y) (17)

ψD(x, y) = ψ(x)ψ(y) (18)

As in section 3, x(m, n) is the highest resolution version of
the signal x(t1, t2), and

x (t1, t2) =
∑
k1

∑
k2

x (m, n) ϕ (t1 − k1, t2 − k2) (19)

is analogous to equation (1). Similarly, if x̂(t1, t2) is reconstructed
with only the coefficients from LH−1, HL−1, and HH−1, then

x̂ (t1, t2) =

∑
k1

∑
k2

LH−1 (k1, k2)
1√
2
ψH

(
t1
2

− k1,
t2
2

− k2

)

+
∑
k1

∑
k2

HL−1 (k1, k2)
1√
2
ψV

(
t1
2

− k1,
t2
2

− k2

)

+
∑
k1

∑
k2

HH−1 (k1, k2)
1√
2
ψD

(
t1
2

− k1,
t2
2

− k2

)
(20)
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(b) cA−1 with the Daubechies filter bank.
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(c) cD−1 with the Daubechies filter bank.
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(d) cA−1 with the optimal filter bank.
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(e) cD−1 with the optimal filter bank.

Fig. 2. Decomposition of a signal x(n) using the Daubechies wavelets and the optimized wavelets.

The error energy between the original and reconstructed signal is
given by

E =

∫∫
e2 (t1, t2) dt1dt2

=

∫∫
(x (t1, t2) − x̂ (t1, t2))

2 dt1dt2

(21)

Using a similar technique as in section 3 to minimize the pro-
jection of the signal onto the wavelet subspaces, the derivative of
E with respect to the filter weights is set to zero, as in equation
(13).

Solving equation (13) for the 2-D case using equations (15)-
(21), and the orthogonality properties, gives:

∑
l1

∑
l2

h1 (l1) h1 (l2)
∑
k1

∑
k2

x (2k1 − l1, 2k2 − l2) ·

x (2k1 − r, 2k2 − r) = 0

(22)

where r = 1 . . . N . This is again a minimization problem with
N unknowns, but this time, in N non-linear equations. The same
linear and non-linear constrains given by equations (3)-(7) apply.
This type of system can also be solved using the same SQP tech-
nique as mentioned in section 3.1

4.1. Results

The above technique was used to match filters to two test images,
the popular Lenna image and an X-ray image. In both cases, N =
8, and the initial conditions for the optimization routine were set
using the popular Daubechies 8 tap filter bank.
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Fig. 3. PSNR vs bpp for the Lenna (bottom) and X-ray (top) test
images, coded with the optimized filters as well as the original
Daubechies 8 tap filters. The top two graphs follow the right hand
side y-axis while the bottom two follow the left y-axis.
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(a) Daubechies 8 tap.
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(b) Optimized for Lenna.
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(c) Optimized for X-ray.

Fig. 4. Pole-zero plot for h0(n).

The images were then coded with an implementation of the
EZW coding algorithm [3]. The number of decomposition levels
was fixed at three. The results for the coding of Lenna and X-ray
images are shown in figures 3.

These results show that the filter matched to the image shows
a substantial improvement in terms of Peak Signal-to-Noise Ratio
(PSNR) at high bpp. At 1 bpp, the PSNR difference between the
Daubechies wavelet and the optimized wavelet is approximately
1.5 dB for both images. However, this difference drops off at
higher compression ratios. This trend has also been noticed in [9]
and [10], where the filters are optimized based on smoothness cri-
teria. This may be explained by the vanishing moments [7, 11]
of the wavelets designed, which relates to their approximating
power. The vanishing moments are related, but not always equal
to the number of zeros at z = −1 in h0(n), see figure 4. The
Daubechies functions are designed to have maximum number of
vanishing moments (i.e. 4 vanishing moments for filter length of
8). The wavelets designed for the Lenna and X-ray test images
have 2 and 1 vanishing moments respectively. As the bit rate re-
duces, more and more wavelet coefficients are lost due to quanti-
zation. This results in the optimized wavelets making coarser and
coarser approximations without these coefficients for reconstruc-
tion. Because of the lower number of vanishing moments, the rate
at which the approximation power is affected with the loss of co-
efficients is greater than for the case with the Daubechies wavelet.

5. CONCLUSION

The technique described in this paper matches wavelets to 1-D and
2-D signals effectively. Image compression results show a signif-
icant PSNR gain of over 1.5 dB at high bit rates. This gain, how-
ever, drops off for lower bit rates, which can be explained by the
lower approximating power of the optimized wavelets.

It should be made clear that the SQP minimization routine
does not give a global minimum solution to the problem. Hence,
the initial conditions for the minimization should be considered an
important factor for the solution. In tests performed, it was found
that for N = 8, using the Daubechies filter bank as initial condi-
tions gave the best optimized wavelet.

Future work involves studying further the properties of these
optimized wavelet to understand what makes them so effective for
that particular image. Another area which is to be investigated is
the design of biorthogonal wavelets using the technique described
here. Biorthogonal wavelets are less constrained than orthogonal

wavelets, and their filters can be symmetric. This potentially al-
lows for an even greater coding gain than for the case of orthog-
onal wavelets. But in the biorthogonal case, we do not have the
orthogonality conditions referred to in section 2.1. This then leads
to a more complicated set of equations than (14) and (22).
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