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ABSTRACT

The set partitioning in hierarchical trees (SPIHT), an efficient 
wavelet-based progressive image-compression scheme, is 
oriented to minimize the mean-squared error (MSE) between the 
original and decoded imagery.  In this paper, we use the kernel 
matching pursuits (KMP) method to estimate the importance of 
each wavelet sub-band for distinguishing between different 
textures segmented by an HMT mixture model.  Before the 
SPIHT coding, we weight the wavelet coefficients, with the goal 
of achieving improved image-classification results at low bit 
rates.  A modified SPIHT algorithm is proposed to improve the 
coding efficiency.  The performances of the original SPIHT and 
the modified SPIHT algorithms are compared. 

1. INTRODUCTION 

It is often useful to implement compression algorithms that 
account for the ultimate classification task associated with the 
decoded imagery, such as in detecting biological abnormalities 
in compressed medical images and in compressing aerial 
imagery for remote-sensing applications.  The goal is to 
compress the image efficiently while accounting for the fact that 
the decompressed image will be employed in a classification 
task.  The overall encoding scheme is shown in Fig. 1.  We here 
focus on wavelet-based image compression algorithms, since 
such now represent the state of the art and are used in practical 
algorithms.

Hidden Markov trees (HMT) in the wavelet domain capture 
the statistical dependence of wavelet coefficients well, providing 
a reliable segmentation of image textures [3]. We propose an 
unsupervised image segmentation method using an HMT 
mixture model, the parameter estimation problem of which is 
solved by the EM algorithm, a widely applied technique in 
computational pattern recognition [4].  The hidden posterior 
probability distribution across the mixture components results in 
the image segmentation.  The segmentation is performed 
autonomously at the encoder, and the goal is to prioritize for 
compression those wavelet coefficients that play important roles 

in this segmentation stage, despite the fact that these coefficients 
may be of small amplitude (and hence given low priority by 
conventional wavelet encoders).

Set partitioning in hierarchical trees (SPIHT) is an effective 
embedded wavelet-based image-coding algorithm [1].  It seeks 
to minimize the mean-squared error (MSE) at any bit rate by the 
progressive transmission of the partially ordered bit planes and 
the effective exploration of the self-similarity across the wavelet 
trees. However, the MSE-based measure is not in general well 
correlated with the image-recognition quality, especially at low 
bit rates (small wavelet coefficients, which may be important for 
classification, are given low priority and therefore a coarse 
representation by conventional MSE-based encoders).  To 
optimize the image visual quality, perceptually weighted 
quantization demonstrates a significant improvement in visual 
quality [2].  Similarly, we estimate the recognition importance of 
each wavelet subband by the kernel matching pursuits (KMP) 
method.  By weighting the wavelet coefficients properly, we 
order the transmission bits not only by the magnitudes of the 
wavelet coefficients but also by their contributions to image 
recognition.  An efficient algorithm is developed especially for 
the weighted wavelet coefficients, to improve the coding 
efficiency. 

The remainder of the paper is organized as follows.  In Sec. 
2 we give the definition of the HMT mixture model along with 
the expectation-maximization (EM) training algorithm. We 
consider in Sec. 3 an additive regression model to estimate the 
importance of the wavelet coefficients for texture recognition.  
In Sec. 4 the modified SPIHT coding scheme is discussed. 
Typical results of the algorithm are presented in Sec. 5, with 
conclusion in Sec. 6.

2. HMT MIXTURE MODEL 

The wavelet transform is popular in signal processing and image 
compression, it effectively representing both the local features 
and global characteristics [7].  The persistence statistical 
property of the wavelet coefficients - that is, if the magnitude of 
the wavelet coefficient is large its children are likely to have 
large magnitudes - is captured by a hidden Markov tree (HMT) 
model.  If the image contains more than one texture, we use 
HMT mixtures to model the statistical characteristics.  The 
mixture-density parameter estimation is solved by the EM 
algorithm [4]. The probabilistic model is 
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Figure 1.  The Overall coding system
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We estimate the probability that the tth wavelet tree is 
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and update the mixing coefficients as 
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The parameters of each HMT are updated by the EM 

algorithm in [3] under the sample probability )()( tp k
j ,

t=1,2,…N.  The samples that are associated with texture j with 
high likelihood make a greater contribution to the parameters of 
that texture component.  We iteratively estimate the probabilities 
and update the model parameters until the model converges to a 
local optimal solution.   

Based on the component probability, we segment the image 
by using maximum a posteriori (MAP) estimator, that is,     

)|(maxarg)( i
i

HMTPc ww                                (2.4) 

The parameter M, the number of the textures in the image, 
is automatically selected via an information-theoretic model-
selection method called the minimum description length (MDL) 
principle derived by Rissanen [6], considering both the model 
complexity and accuracy.

3. IMPORTANCE WEIGHT ESTIMATION 

Transmitting wavelet coefficients prioritized based on their 
amplitude strength may not optimize the recognition rate (here 
characterized by distinguishing textures) based on the decoded 
imagery, so we introduce a rescaling process using estimated 
importance weights.  The purpose of the importance weights is 
to help the encoder to order the output bit stream with 
consideration of the ultimate recognition task.  The wavelet 

features that are highly correlated with the texture class labels 
(determined automatically, as discussed in Sec. 2) are important 
to distinguish the textures.  These features should have higher 
priorities and be transmitted earlier.  However, the wavelet 
features that are more important to segmentation may have small 
amplitudes and small variances compared to the wavelet features 
of less importance to segmentation.  The rescaling process 
alleviates this phenomenon. 

The kernel matching pursuits (KMP) [5,8] algorithm is 
employed to prioritize the importance of the wavelet coefficients 
for accurate segmentation.  KMP is a generative learning 
algorithm and offers an efficient iterative method to select the 
kernel functions and estimate the weights.  The sparseness of the 
algorithm not only implies good generalization but also allows 
us to prune a large number of wavelet coefficients, retaining 
those that are most important for the classification stage.  

Assume we have a vector of wavelet coefficients w from a 
wavelet tree, and we wish to predict the texture label y (e.g., for 
two textures y is binary).  The classifier is designed by using 
KMP [5], which is formulated as 
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where ),( wicK is a kernel function, selecting wavelet 

coefficient ic  from w, i  is the corresponding kernel weight, 

reflecting the importance of ci to the classifier and m is the 
number of wavelet coefficients selected by KMP, indicating the 
complexity of the classifier.  In the generative learning progress, 
we select the kernel functions (wavelet coefficients) one by one 
to reduce the cost function defined as follows: 
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where iŵ is the quantized wavelet coefficients associated with 

the ith  wavelet tree,  (m of these wavelet coefficients are chosen 
by KMP to be quantized to a specified precision, dictated by the 
weighting and the number of SPIHT iterations, and the other 
wavelet coefficients are quantized to zero).  The scalar is a 
Lagrangian multiplier that constitutes a compromise between the 
quantization error and the regression error.  The reason for using 
the quantization (MSE) error is that we not only want to select 
the features that facilitate the segmentation but also maintain a 
relative wavelet strength within the wavelet tree that is amenable 
to SPIHT.  The MSE term in (3.2) penalizes choosing the 
wavelet features deep in the tree, which tend to have lower 
variances and thus smaller MSE importance.  
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The importance weight of the ith selected wavelet 
coefficients is defined as:

otherwise
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If is small, all selected wavelet coefficients are 
approximately equally important.  If is large, the importance
weight of the selected wavelet coefficient is approximately
proportional to the kernel weight.

4. MODIFIED SPIHT 

Between the wavelet transform and the SPIHT coding, we 
introduce a rescaling process, assigning finer quantization step 
sizes to the wavelet features with larger importance weights. 
After weighting the wavelet coefficients as designed in the 
previous section, the SPIHT algorithm may be less efficient for 
implementation of the spatial orientation zero tree structure
(SPIHT was originally designed for a MSE cost function alone; 
the new weighting of importance to potentially small wavelet 
coefficients may undermine assumptions in designing SPIHT). 
We modify the SPIHT algorithm to improve the coding
efficiency.

4.1. Review of the SPIHT algorithm

The effectiveness of the SPIHT algorithm originates from the
efficient subset partitioning and the compact form of the 
significance information.  The SPIHT algorithm defines spatial 
orientation trees, sets of coordinates and the recursive set 
partitioning rules [1].  The algorithm is composed of two passes:
a sorting pass and a refinement pass. It is implemented by
alternately scanning three ordered lists, called list of
insignificant sets (LIS), list of insignificant pixels (LIP) and list 
of significant pixels (LSP), among which LIS and LIP represent 
the individual and sets of coordinates, respectively, whose 
wavelet coefficients are less than a threshold defined.  During 
the sorting pass the significances of LIP and LIS are tested,
followed by removal and set splitting operations to maintain the 
insignificance property of the lists.  The LSP contains the 
coordinates of the significant pixels that are scanned in the 
refinement pass.

4.2. Modified SPIHT algorithm

The weighted wavelet coefficients, which have a larger dynamic
range than the original ones, make the SPIHT algorithm 
inefficient, because this results in more scans of the wavelet
coefficients.  Consequently, a modified SPIHT is needed to 
overcome this problem.

First, we note that the wavelet coefficients with 0
importance weights are blocked out.  As a prior knowledge, we 
need not waste the bit budget on those wavelet coefficients. 
Therefore, after each sorting pass, we delete the corresponding 
coordinates from LIP and the sets whose components all have 0 
importance weights from LIS. This is done at both the encoder 
and the decoder.

Second, it is not necessary to encode the weighted
coefficients using too many bits (for the small-amplitude
coefficients, only enough bits are required to achieve the 
classification task, since they make a small contribution to the
MSE). We can define an appropriate bit limit for each weight 
coefficient.  When the wavelet coefficients reach the upper
limits of the refinement bits, we can skip them in the refinement
pass.

5. EXPERIMENTAL RESULTS 

We select a high altitude optical aerial image of size 256x256 
pixels from the USC-SIPI image database, to demonstrate the
application of the algorithm proposed. This is an 8 bits/pixel
black and white image with two distinct textures: a rural area 
and an urban area, as shown in Fig. 2. 

Figure 2. High altitude aerial image

After a three-level wavelet decomposition, we obtain 
wavelet trees w of size 64.  We train the parameters of the 2-
HMT-mixture model by the EM algorithm described in Sec. 2.
In Fig. 3 we show the posterior probabilities of one texture 
component.  We see that most of the city areas are brighter,
which represents higher likelihood and the rural areas are darker 
indicating lower likelihood.  The segmentation is consistent with 
human visual recognition. The task now is to prioritize those 
wavelet coefficients of importance for achieving this
segmentation, even if they are of small amplitudes.

Figure 3.  The posterior probability of the urban texture

The HMT mixture model provides a meaningful
segmentation of a multi-texture image.  However, it is too 

III - 651

➡ ➡



complicated to analyze the contribution of each wavelet sub-
band to separate the textures.  We introduce the KMP method to
handle this problem.  We iteratively select the wavelet
coefficients that reduce the cost function defined in (3.2) and 
estimate the wavelet-coefficient weights i jointly with all the 

selected coefficients.  We choose the first 30 most important 
wavelet coefficients and calculate the importance weight of each 
wavelet feature as formulated in (3.3).

Figure 4. Classification performance in low bit rates 

In Fig. 4 we compare the classification performances of the 
decoded image using different coding schemes (using HMT-
based classification).  The weighted SPIHT begins to code the
wavelet coefficients important to segment the two textures in an 
earlier stage; therefore the classification rate is higher at low bit 
rates than the original SPIHT scheme. The modified SPIHT 
algorithm can save 2% of the bit budget to get the same 
performance in this case.  It would be even more efficient in
coding larger trees with more wavelet coefficients pruned. 

Fig. 5 shows the decoded images using different coding 
schemes at the bit rate of 0.6 bit/pixel. The differences come
from the particular subbands deep in the wavelet spatial 
orientation trees, which facilitate segmentation. The
classification performance improves around 30% with little 
decrease in the image-reconstruction quality.

6. CONCLUSIONS 

With the ultimate goal of image classification, we designed a 
scheme for properly pruning and weighing the wavelet 
coefficients before wavelet coding.  We demonstrated improved 
segmentation performance of the decoded image, with little 
decrease in image quality at low bit rates. We also proposed a
modified SPIHT algorithm, using the importance weight
information, to save the bit budget.  We tested the method on a 
high altitude two-texture aerial photographic image.

Weighted  SPIHTOriginal SPIHT

Modified SPIHT Original image

Classification error

Figure 5. Decoded images at 0.6 bit/pixel bit rate 
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