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ABSTRACT

The paper presents an automatic initialization procedure for
visual tracking of human motion. Instead of relying merely
on low-level image features to give a single estimate of the
initial human posture, the system seeks to find a set of sam-
ples that carries multiple hypotheses of the pose. By accu-
mulating different image cues in the first 3-15 consecutive
frames and combining dynamic information regarding hu-
man motion, the system builds a human body model for the
person to be tracked from a video sequence and produces
a sample set as an estimate of the posterior distribution of
the initial posture. The sample set provides a good starting
point for tracking with sequential Monte Carlo methods.

1. INTRODUCTION

There is a growing need for robust tracking of articulated
human body motion in the fields of human-computer inter-
action, visual surveillance, gait analysis and person iden-
tification. There has been considerable previous work on
developing such systems [1]. However, almost all track-
ing methods assume that a good target model is already
available prior to tracking and the target state is known at
least for the first video frame. The initialization problem
is considered as a separate recognition problem and is not
addressed in these methods.

Initialization of tracking is challenging since the estima-
tion of target state has to be performed with only partial in-
formation about the target. While shape (edge) information
is generally available for tracking, a region (color) model
may not be feasible as colors and textures may vary from
target to target. A robust initialization should selectively
make use of different video cues and accumulate evidence
from different features. Initialization is essentially a prob-
lem of how to effectively exploit the rich content in video
data to prepare for tracking. This has not been sufficiently
addressed in past work.

One of the methods of human pose estimation for track-
ing [2] estimates the initial pose of a walking human by
matching the boundary of a human model with image obser-
vation for the first 10-15 frames. The author observes that
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although it was possible to estimate the correct initial pos-
ture with this procedure, the problem is very hard and de-
serves further investigation. In [3], many manually marked
2D views of the human body are stored. Test images are
matched against deformed exemplars until a good match is
reached. Both methods employ only edges for pose esti-
mation. In [4], a human tracker is initialized by using a
parallel edge detector to collect body segment candidates.
The method implicitly uses motion information since static
candidates are discarded.

All the above methods give a single estimate of the sub-
ject’s initial pose. We believe that the initialization process,
like tracking, should carry multiple hypotheses as well, es-
pecially when no accurate target appearance model is avail-
able. In this paper, we propose an automatic initialization
approach that builds human models for the subject to be
tracked from a video sequence and obtains all necessary
parameters for tracking. Use of a walking dynamic model
is motivated by the fact that in many applications such as
surveillance, people’s ingress into the scene may occur from
one of several possible entrances. Tracking can be initial-
ized by estimating the person’s walking pose in a specific
view. The method combines motion and shape information
to form a motion-enhanced shape image as a robust image
feature. In addition, skin color is used as a supplementary
cue to give a rough initial estimate of the walking pose prior
to more accurate initialization process. Instead of giving a
single point estimate, the method provides an estimate of
the initial posterior distribution of the target state for sub-
sequent tracking. The result of the initialization procedure
is a sample set that accumulates information from previous
observations and carries multiple hypotheses.

We first define the initialization problem in section 2.
Model construction and parameter estimation from multiple
video cues is described in section 3. Section 4 presents the
sample-based initialization process. The remaining sections
describe experiments and present conclusions.

2. PROBLEM DEFINITION

Denote the target state and observation at time t as xt and
yt respectively. Let Yt = {y0, ...,yt} be the history of
observations up to time t. In human tracking, xt is the
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configuration of an articulate human body model, such as
the one shown in Fig. 1. The initialization process should
also estimate parameters such as the dimension of the body
model M, walking cycle T and walking velocity v. Denote
Θ = {M, T,v}.

Given a video sequence containing a walking human in
a given view and a possibly cluttered background, the ini-
tialization problem seeks to use as few frames (M ) as possi-
ble to find a good estimate of p (xM ,Θ|YM ) without prior
knowledge about the subject’s region appearance.

We next show how various cues can be used to infer the
conditional distribution of xt and Θ.
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Fig. 1. The human body model used in this work.

3. MULTIPLE VIDEO CUES

3.1. Motion

Assuming a static camera and that the human subject is the
only large moving region in the scene, motion information
is extracted through background subtraction. The algorithm
operates in RGB space and normalized rg space in order
to eliminate shadows, where r = R/(R + G + B) and
g = G/(R + G + B). A number of background frames
are used to train a background model. For each pixel, the
mean in all 5 channels and variance in chromatic channels
σr, σg are computed and recorded. Given a new pixel, its
(R, G, B, r, g) value is compared with the corresponding
background pixel. If |r − µr| + |g − µg| > C(σr + σg)
or the difference in RGB is larger than a large threshold
TRGB , the pixel is declared as a foreground pixel.

After moving regions in the scene are detected, holes
are removed by performing a ‘closure’ operation on the re-
gions. In our experiments outliers were less detrimental
than holes. The motion silhouette, denoted by mt, is then
defined by the largest moving region, or the two largest re-
gions if their projections on the x-axis overlap for more than
40% of the width of the larger region. Fig. 2 shows an ex-
ample of background subtraction of a subject walking and
casting a shadow.

Given the silhouette, the size of the model can be es-
timated from the silhouette height H . The dimensions of
various body segments and their proportions have been ex-

Fig. 2. Examples of background subtraction. Left: The
Original color image. Middle: The result using only RGB
background model. Right: The result using combined RGB
and rg models with region operation.

tensively studied in anatomical literature [5]. Fig. 1 shows
the body proportion used in this work, which is derived
from [5]. Walking cycle T can also be estimated now by
extracting the stride lengths (widths of the bounding boxes)
from the silhouettes for M frames (M ≥ T/2) and detect-
ing the peaks in the strides. The pelvis location at time t
is estimated by horizontally scanning the silhouette at the
height of 0.491H and taking the mean of the midpoint of
the silhouette and the midpoint of the bounding box. The
walking velocity can then be estimated by taking the differ-
ence of pelvis locations in consecutive frames. Velocity is
computed for every two consecutive frames for the first M
frames and the median of these is taken as the estimate for
v.

We observe that the above procedure is generally ro-
bust for estimating Θ. Nonetheless we assume Θ could
be slightly misleading and may undergo small changes and
take that into account in our density estimation.

3.2. Motion-enhanced shape

A gradient map gt is computed by convolving the original
image with a edge detection kernel, gt = G(it) where G
denotes convolution operation and it is the video sequence.
This gradient map is then masked by the motion silhouette
to set background gradient to zero.

Although gt offers a good cue for accurate posture es-
timation, this information can sometimes be very weak, es-
pecially when the color of a person’s clothes is similar to
that of the background. On the other hand, motion bound-
ary is very pronounced since the boundary is detected on
the binary motion mask mt. However, we avoid using mo-
tion boundary directly as it is usually noisy with holes and
outliers and lacks gradient inside the boundary. Instead we
form a motion-enhanced gradient map by increasing the gra-
dient value for every pixel if it is greater than certain thresh-
old and is on the motion boundary, i.e., gt(x, y) = gt(x, y)+
G(mt)(x, y) if gt(x, y) > Tg . Fig. 3 shows an example of
motion-enhanced gradient map.
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Fig. 3. From left to right: original gradient, motion bound-
ary, motion-enhanced gradient.

3.3. Skin color

We observed that the estimated human pose based on gradi-
ent information is sometimes offset by half of the walking
cycle from the true pose, which is also observed in [2] . Ex-
tra information needs to be used for disambiguation. Skin
color is used in this work. The idea is to track hand loca-
tions and detect the occlusion of one of them. First skin
color regions are detected within motion region mt. The
head is then detected by assuming the head is a large skin
blob near the top of the motion region. Candidate hand re-
gions are given by large blobs within a belt region of 0.35H
to 0.65H . Hands are located by associating each blob with
the closest blob in previous frame and eliminating the blobs
with too short trajectories. See Fig. 4 for an example of
hand detection. Once the outer hand and the occluded hand
are identified, a binary decision can be made about which
half of the walking cycle the person is in for the first frame.
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Fig. 4. Hand detection. Left: Detected skin blobs. Middle:
The x-coordinates of hand candidates over time with the
head location as reference point. Right: Two hands traced
out.

4. DENSITY ESTIMATION

We employ a sequential Monte Carlo method to generate
multiple hypotheses and propagate them over time.

4.1. Density propagation

The purpose of this initialization procedure is to estimate
p(xt|Yt). If samples from p(xt−1|Yt−1) is given, the new
posterior can be obtained by propagating the samples from
previous frame like in particle filter [1]. For the very first
frame, with insufficient information regarding the subject,
we assume that the initial body configuration is uniformly

distributed over the half walking cycle decided by skin color
in section 3.3.

Given the sample set from p(xt−1|Yt−1), propagation
is implemented through a projection-drift-diffusion process [6].
If we denote the walking motion as X(t) whose value is the
instantaneous configuration of the subject at time t, X(t)
would form a closed trajectory in its configuration space
and each pose can be determined by φt ∈ [0, 1], known as
pose. Given a sample configuration s(n)

t−1, its projection on

the motion trajectory φ
(n)
t−1 ∈ [0, 1] is found by finding the

closest point on the trajectory to the sample. The projection
then undergoes a drift described by φ̃

(n)
t = φ

(n)
t−1 + ∆φ

(n)
t

where the pose changing rate ∆φ
(·)
t follows a Gaussian dis-

tribution centered at 1/T . The predicted sample then takes
a random walk in the configuration space (diffusion).

4.2. Evaluation

Initialization is next evaluated for being acceptable for uni-
modal assumption. It is observed that after propagating the
samples for a few frames, a high peak in the sample distri-
bution emerges. A measure of effectiveness of a unimodal
assumption is used as a criterion to stop the initialization
process. Since dimensionality of {xt,Θ} is high (d > 10),
we measure the distribution of the pose p(φt|Yt) instead.
By projecting samples onto the motion trajectory, pose sam-
ples and associated weights {φ(·)

t , w
(·)
t } can be computed.

Given {φ(·)
t , w

(·)
t }, an estimate of the pose density p̂k (φt|Yt)

is obtained using kernel density estimation with a Gaus-
sian kernel. On the other hand, under the unimodal as-
sumption, a Gaussian density p̂u (φt|Yt) can be estimated
from the sample set through Maximum Likelihood estima-
tion. Kullback-Leibler divergence is then used to measure
the difference of the two densities:

KL (p̂u, p̂k) =
∫

p̂u log (p̂u/p̂k) dφt.

The initialization process will stop if the change in KL di-
vergence over two consecutive frames is negligible or M
frames have been used.

5. EXPERIMENTS

We tested the system on several video clips containing both
indoor and outdoor scenes and a variety of subjects. In
these test videos the system produces a good sample set
that are suitable to initiate more advanced Sequential Monte
Carlo tracking techniques. Here we describe one of the test
videos. The video contains 55 frames of a subject walk-
ing in a corridor in near frontal-parallel view. The person
walks at normal speed (about 30 frames/cycle), with some
abnormal movement of the arms. The background con-
tains mainly straight edges, which would cause problems
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in methods relying only on gradient. A few small regions
with colors that are similar to skin color are also present in
the background. About 70 background images are used to
train a background model.

Using the human model in Fig. 1, the state xt is a 10-
dimensional vector, with two joint angles for each limb plus
pelvis location. The motion-enhanced gradient map is then
used to compute sample weights. The weights are deter-
mined by the pixel values of the gradient map on the perime-
ter of the model. In addition to gradient, the silhouette im-
age is used as a secondary cue to incorporate some region
information. Samples that cover more silhouette regions are
preferred. Gaussian models are used for the observation
model, for which we start with a relatively large variance
and gradually decrease the variance in order to prevent the
samples from converging to a mode too early.

Some results of the experiment are shown in Fig. 5.
Starting with 50 uniformly distributed samples over the first
half of the walking cycle, the system gradually located the
correct pose after propagating the samples for 5 frames,
as seen in Fig. 5(a). For clarity 20 samples are shown as
stick models over the original images. Fig. 5(b) depicts the
change of estimated pose distribution during initialization.
It can be clearly seen how the distribution evolves from a
multi-modal distribution to a unimodal one. Fig. 5(c) shows
the change of KL Divergence during initialization.

The system is evaluated on different starting poses. It is
found that for normal walking speeds, a fair sample set can
be produced within 5 frames for starting poses that are clear
of self-occlusion. Poses with heavy self-occlusion create
more modes in the sample distribution and sometimes need
more time to converge. However, a half walking cycle is
usually enough for any starting poses. Notice that we can
always choose a frame with a good starting pose based on
silhouette stride information. To avoid delays the system
can propagate samples backward as initialization does not
have to be a forward sequential process.

6. CONCLUSIONS

A system that performs automatic initialization for tracking
human motion is described. The system combines bottom-
up feature extraction that explores multiple video cues with
a top-down sample propagation process that employs mo-
tion dynamics. The result of the initialization process is
a sample set that accumulates information from multiple
frames and carries multiple hypotheses.

Other than background subtraction, techniques such as
optical flow and motion segmentation provide more detailed
motion information. We will further investigate these tech-
niques and extend our work to initialization of multiple per-
sons and multiple activities tracking.

(a) The sample set in the first, third, and fifth frames.
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(b) Evolution of pose distribution. Left: Distribution
represented by histogram. Right: Kernel density estimation

(solid) and unimodal estimation (dotted).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame

(c) Evolution of KL Divergence during initialization.

Fig. 5. Some experiment results.
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