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ABSTRACT

For navigation and obstacle detection, it is necessary to de-
velop robust and efficient algorithms to compute ego-motion
and model the changing scene. These algorithms must cope
with the high video data rate from the input sensor. In this
paper, we present an approach to achieve improved motion
tracking from a monocular image sequence acquired by a
camera attached to a pedestrian. The human gait is mod-
elled from the motion history of the camera, and used to
predict the feature positions in successive frames. This is
encoded within a maximum a posteriori (MAP) framework
to seek fast and robust motion estimation. Experimental re-
sults show how use of the gait model can reduce the com-
putational load by allowing longer gaps between successive
frames, while retaining the robust ability to track features.

1. INTRODUCTION

We are investigating the development of mobility aids for
visually impaired people. A single camera is attached to
the pedestrian facing forward to observe the scene in the
direction of motion and used to detect potential hazards. By
establishing feature correspondences in successive frames,
it is possible to recover information about the structure of
the scene and the motion of the camera, which are essential
for obstacle detection.

1.1. Motivation

The predict-correct strategy is adopted by many existing
motion tracking systems. In the prediction stage, to avoid
the effects of discontinuous motion, it is simply assumed
that a minimal displacement exists between two neighbor-
ing images [1]. The potential camera motion is predicted
by linearizing the image motion, where a tracker works re-
liably against a complicated model configuration. These
practical techniques guarantee feature correspondence in a
limited area but also incur a significant computational cost.

For tracking and obstacle detection for pedestrians, it
is probable that modelling the human gait will improve the
efficiency and robustness of such algorithms. For exam-
ple, Molton et al. [2] modelled such motion, using a-priori
data captured from a motion capture system, and in-situ data
acquired from a digital compass and inclinometer. They
also referred to data acquired from visual stereo and sonar
devices. In this paper, our approach is to compute ego-
motion only from a single video sensor during the walking
sequence, i.e. not to rely on pre-training nor use additional
complex devices. The advantage of this approach is that it
requires minimal hardware to be attached to the pedestrian,
although computational power remains an issue. Further,
it does not require complex alignment and calibration, ef-
fectively learning and modifying the gait from simple video
acquisition.

1.2. Outline of our approach

Using structure-from-motion, we use gait analysis to achieve
approximate motion prediction, then globally refine this in
the context of maximum a posteriori (MAP) estimation. In
the first stage, the SUSAN corner detector [3] selects 150
corner features in the first image of a perspective video se-
quence. We then apply the Shi-Tomasi-Kanade (STK) al-
gorithm [1] to match these features in the first two frames.
Knowing the intrinsic parameters of the camera, a robust
estimate of the fundamental matrix and epipolar geometry
is obtained from these matched features. The camera mo-
tion between these two frames and the scene geometry are
also recovered [4]. Repeating this process for � frames ( � is
usually 50 for a complete stride pattern at a 25 Hz sampling
rate) leads to the recovery of a first estimate of a dynamic
motion model with six degrees of freedom, i.e. three dis-
placement and three Euler angles (pitch, roll and yaw). We
then apply a novel predict-correct stage to continuously ac-
quire and update the estimate of the ego-motion. The steps
are: (1) Predict the feature positions in the ( � + � )th frame
by exploiting the 3-D feature positions and the camera mo-
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(a) First frame (b) 30th frame (c) 50th frame

Fig. 1. 1st video clip with the feature points superimposed.
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(g) 3-D feature positions in frame 50

Fig. 2. Estimation of camera positions and recovery of 3-D
structure for the sequence shown in Fig. 1. A right-handed
coordinate system is involved, where the Z-axis points in
the walking direction.

tion parameters provided by the dynamic gait model. (2)
Apply a coarse-to-fine strategy to match the features. (3)
Apply the expectation-maximization (EM) algorithm to re-
cover the six ego-motion parameters while removing out-
liers. On completion, the ( � + � + � )th frame is examined,
following the same procedure as above. The intention is to
vary � , while maintaining the validity of the gait model,
using all or a subset of the most recent � frames which are
sufficient to sample the gait.

Fig. 1 illustrates an image sequence, and the detected
and tracked feature points. Tracking these feature points
leads to recovery of the fundamental matrix, camera motion
and scene geometry [4]. Fig. 2 shows the camera positions
based on the motion estimation, and the 3-D feature posi-
tions respectively.
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Fig. 3. Optimization of individually estimated motion pa-
rameters using IRLS.

2. GAIT EXTRACTION

Walking pattern (or gait) is highly periodic behavior that be-
comes mature once one starts walking at around 12 months.
Knowing the ongoing gait, extracted from the motion his-
tory, we are able to predict the location of the feature points
in the future frames. Therefore, tracking these features be-
comes more efficient.

Let d( � ) be the periodic component of the generic dis-
placement function in terms of time � during walking. The
“oscillating property” of the walking pattern is described by
a truncated Fourier series as


 � �  � 
 � � ��
� � �


 � � ! # �
� % � � ' �  ( (1)

where % �
= ) +, ( - is a time period);


 �
is the mean value;
 � .  is one of the six degrees of freedom (DOF) in motion

including rotation and translation;

 �

and
' � are the ampli-

tude and phase of the � -th harmonic in one stride period,
respectively [5]. The definition of / is critical, and em-
pirical tests show 3 terms will be enough for an adequate
model. Outliers usually exist in the motion estimation due
to sudden changes in body posture and measurement noise.
To remove such outliers and obtain a smooth model, M-
estimation is used due to its robustnes and fast convergence.
The iteratively reweighted least squares (IRLS) approach is
employed. Fig. 3 shows the optimization results using IRLS
for the motion estimation shown in Fig. 2.

3. MAP ESTIMATION

Human gait generates a 3-D “template” to predict future
motion. To recover ego-motion we first register the pro-
jection of the 3-D “template” to the localized 2-D feature
points. In a classical coarse-to-fine framework, the search
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window for correspondence is a fixed-size square. However,
in the case of a wide baseline between frames, i.e. decreas-
ing frame rates, the search window should be simultane-
ously changed with the projective transformation of the im-
ages in order to guarantee efficiency and accuracy of track-
ing. To determine the size of the adaptive search window,
the Euclidean distance (or residual) between the correctly
tracked (from the STK tracking) and the predicted feature
points (from the gait modelling) at the � th frame is taken
into account. This frame provides the most recent infor-
mation of camera motion. Experimental results show that
the estimated Euclidean distribution is Gaussian or pseudo-
Gaussian, with width determined by ( � � � �

), where �
is the mean of the residuals and

�
is the standard deviation.

As later frames are registered, these are used to determine a
new adaptive search window for further tracking.

Due to correspondence errors we require robust recov-
ery of ego-motion between frames. Consider a dynamic
representation for the registration, which is represented as� � �� � � �� � � �� � � , where �� �

is the scene structure, �� �
is the im-

age observation, and �� �
is the motion model at time � . Given

a good �� �
, �� �

is able to match the projected position of �� �
in

an image plane by maximum likelihood. Estimating motion
parameters in a sequence, given the scene structure (from
the previous camera motion history) and actual image cor-
respondences, can be dealt with by the EM algorithm [6].
The conditional log-likelihood can be derived as

� � �� � 
 �� � � � � 	 





� �

� �� � � 
 �� �  � �� � � � � � � � �
� �� �  
 �� � � � �� � � �

(2)
where � and � label individual image features respectively.

In the E-step, the expectation of feature correspondence
is based on the gait. Using [6], Eq. 2 finally becomes� � �� � 
 �� � � � � 	

� �� 





� �

� �� � � 
 �� �  � �� � � � � � �� �  � � � � � � �� �  � � � � � �  
(3)

In the M-step, Eq. 3 is iterated in order to obtain the
maximum likelihood. This involves finding a �� �

so that

� � �� � 
 �� � � � � " � � �� � � � 
 �� � � � � � (4)

where the Levenberg-Marquardt technique is applied to seek
the solution for the sake of efficiency.

4. EXPERIMENTAL EVALUATION

We compare the gait-based motion tracking approach to the
STK tracker, and combine this with ego-motion recovery.
The intention is to show whether use of the gait model leads
to improved tracking of features by a better prediction of
their position in future frames, i.e. less features are lost,
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Fig. 4. Comparison between the STK-based and gait-based
framework in tracking (w - width of search window).

(a) True 55th frame (b) Texture-mapped frame

Fig. 5. Comparison of a real frame and its texture-map.

or alternatively whether the gait model allows us to leave a
longer period between processed frames, so improving its
efficiency. The STK model is used as a comparison as it is
robust and widely applied.

Fig. 4 summarizes a performance comparison between
the STK-based and gait-based framework in tracking the se-
quence of Fig. 1 using a Pentium II-300 MMX PC. For
fair comparison, the size of the search window is fixed. As
the frame separation is increased, the processing time is re-
duced in an inverse relationship in each case as there is sim-
ply less processing, but the gait-based approach is signif-
icantly quicker in each case. This is due to two reasons.
First, compared to the STK-based approach using a fixed
number of pyramid levels, the gait-based method uses adap-
tive pyramid levels and subsamples, leading to less com-
putation. Second, the STK-based motion tracking takes a
long period to achieve the fundamental matrix estimation,
which is not required in the gait-based method, after the
feature points have been tracked. In Fig. 4 (b), the STK-
based strategy loses progressively more feature points, and
the difference between that and the gait-based prediction is
understandably greater as the frame separation increases so
that the prediction that includes the motion model is more
robust. To some extent, the data flatters the STK algorithm,
first because some of the features lost in each case occur
simply because they leave the field of view of the cam-
era, and second because the oscillatory motion in this se-
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(a) First frame (b) 30th frame (c) 50th frame

Fig. 6. 2nd video clip with the feature points superimposed.

0 10 20 30 40 50
−0.5

0

0.5

Frame number

t x (
m

)

0 10 20 30 40 50
−0.5

0

0.5

Frame number

t y (
m

)

0 10 20 30 40 50
−2

−1

0

Frame number

t z (
m

)

(a) � � (b) � � (c) � �

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Frame number

θ x (
de

g)

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

Frame number

θ y (
de

g)

0 10 20 30 40 50
0

1

2

3

Frame number

θ z (
de

g)

(d) � � (e) � � (f) � �

Fig. 7. Estimation of camera positions for the sequence
shown in Fig. 6.

quence is not high. Fig. 5 (b) shows how, incorporating
the estimated motion parameters, the recovered 3-D feature
points are projected into a planar image that is then texture-
mapped. This can be compared to Fig. 5 (a), showing
subjectively the proposed framework performs accurately
in motion estimation. Another example is shown in Fig.
6. The results are similar, but one can also observe how,
as frame separation becomes larger, the time consumption
of the STK-based method approaches that of the gait-based
approach. In this instance, this is due primarily to the loss of
the feature points during tracking, i.e. the lesser robustness
of the STK algorithm results in less computational load.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Frame separation 

P
ro

ce
ss

in
g 

tim
e 

(s
ec

)

STK−based (w=5)
Gait−based (w=5)
STK−based (w=7)
Gait−based (w=7)

0 2 4 6 8 10

40

60

80

100

120

Frame separation

T
ra

ck
ed

 fe
at

ur
e 

nu
m

be
r

STK−based (w=5)
Gait−based (w=5)
STK−based (w=7)
Gait−based (w=7)

(a) Time cost (b) Track numbers

Fig. 8. Comparison between the STK-based and gait-based
framework in tracking.

(a) True 5th frame (b) Texture-mapped frame

Fig. 9. Comparison of a real frame and its texture-map.

5. CONCLUSION AND FUTURE WORK

We have presented an approach to integrate gait modelling
with a MAP framework to achieve faster and more robust
motion tracking. The advantage of the approach is that cor-
rect modelling of the human gait results in reliable tracking
of features when a greater time has elapsed between succes-
sive frames, and hence this reduces the processing burden.
In addition, the more accurate prediction of feature posi-
tions in subsequent frames means that more features can
be tracked successfully, hence the motion parameters can
be computed from more correspondences, and the scene re-
constructed with more detail. Potentially, this may lead to
convenient pedestrian aids for the visually impaired as both
size and power demands are reduced on wearable sensors
and computers.
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