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ABSTRACT 

We propose in this paper a new non-linear exponential 

adaptive bi-dimensional (2-D) filter for image modeling. 

The filter coefficients are updated with the Least Mean 

Square (LMS) algorithm. Furthermore, the proposed non-

linear model is used for texture modeling with a 2-D Auto-

Regressive (AR) adaptive model. The characterization 

efficiency of the proposed exponential model is compared 

with the 2-D linear AR model updated with the LMS 

algorithm. The comparison criteria is based on the 

computation of a characterization rate using the ratio of 

"between-class" variances with respect to "within-class" 

variances of the estimated coefficients. Extensive 

experiments show that the exponential model coefficients 

give better results in texture discrimination than those of 

the linear model, even in a noisy context. 

1.INTRODUCTION 

In many 2-D applications such as image enhancement, 

image identification and compression, linear adaptive 

filtering does not give good performances because of the 

non-linear and non-stationary general nature of images. 

Looking for better results, many researches had turned 

their attention to non-linear adaptive filtering. In [6] 

adaptive 2-D Volterra filters have been applied in non-

linear channel distorted image restoration. Since these 

filters use a high number of parameters to represent the 

nonlinear character, research on model which provides a 

low computation cost is a serious problem [4][5]. 

In the present paper, we propose a new non-linear model 

for 2-D signals which takes in consideration high order 

non-linearity without increasing the number of filter 

coefficients. We propose the use of the exponential of the 

2-D support matrix instead of the support matrix itself. 

Thus any non-linearity order can be considered using the 

same number of coefficients of the linear case. The 

proposed non-linear model is used for texture modeling 

with a 2-D Auto-Regressive adaptive model. 

In fact, texture analysis plays an important role in several 

image processing and pattern recognition applications such 

as remote sensing, cartography, robot vision, military 

surveillance and medical imaging. It has long been the 

topic of intense research [3][9]. Texture can be found in 

the background of natural scenes as well, as filling 

elements of surface images, thus the textural features are 

an important pattern elements in image interpretation. 

Various methods for texture features extracting for texture 

characterisation have been proposed during the last two 

decades. One such method characterizes texture by 

discrete Wavelet representation [8]. Fractal based features 

have been also used as features for texture characterization 

[3]. This features depend mostly on textural characteristics 

than on intensity information. Several authors have made a 

comparison of the performance of various features for 

texture characterisation purpose. In [9], Ojala et al have 

compared four texture features: gray level differences, 

Laws texture features, center-symetric covariance features, 

and local binary patterns. 

One of the most promising methods for texture features 

extraction is the parametric modelling, where the 

coefficients of the 2-D AR parametric model are used for 

texture characterisation and synthesis. Various adaptive 

parametric linear filters have been proposed for texture 

characterization [10][11]. The main contribution of the 

present work is the use of a non-linear exponential 

parametric 2-D filter for image modeling. We show how 

much this model can improve texture characterization in 

comparison with the linear model. 

2. RECALL OF THE 2-D LINEAR MODEL  

An image can be represented by a 2-D transversal AR 

parametric linear model with a support of order (p×p) (p

has an odd value) (Figure 1). The value of a pixel at 

position (n,r) is represented by the following relationship: 
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n and r are in the interval [1..L] (L×L: the image size), 
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 are the 2-D AR transversal coefficients. In the 
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stationary case, these coefficients do not depend on the 

position of the pixel (n,r).

Figure 1: Bi-dimensional filter support 

For the filter coefficients adaptation, the Least Mean 

Square algorithm is the most widely used algorithm due to 

its implementation simplicity. It is based on the 

minimization of the mean square error between the filter 

output and the desired output. This algorithm is extended 

to the 2-D case in [2]. Considering the 2-D linear AR 

model (1), a simplified version of the 2-D LMS algorithm 

can be given by: 

For n and r from 1 to L:

 - Calculation of the adaptive filter output using (1). 

  -Coefficients adaptation:  

    For i and j from 
2
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d(n,r) represents the desired output. In texture modeling, it 

is the gray level value of the texture image pixel. µ  is the 

step size of the algorithm; the initial values of the 

coefficients 
ji

W
,

 are set to zero. 

3. THE PROPOSED EXPONENTIAL MODEL 

In the proposed non-linear filter, the filter output y(n,r) is 

calculated using the exponential of the 2-D support pixel 

values. 

For this, we define a matrix Y(n,r) as a filter window of 

size )( pp×  containing the values of the 2-D support 

pixels: 
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We also define a matrix ),( rnEy  as the matrix: 

( )-)(Exp),(
pp
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We note Exp of a matrix A of size p×p the quantity: 
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Thus, the non-linear exponential filter output is given by: 

WrnEyrny *).,(),( =                                                    (2) 

Where W denotes the coefficient matrix defined as: 
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and '.*' denotes the sum of the dot product of ),( rnEy

and W. 

Note that the model (2) can be also written as: 
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4. ADAPTATION OF THE NON-LINEAR FILTER 

WITH THE 2-D LMS ALGORITHM

The 2-D LMS algorithm can be applied for the adaptation 

of the exponential filter by minimizing the square error 

value between the filter output and the desired output  
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The gradient of J with respect to the matrix coefficients is 
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Then the 2-D LMS algorithm for the proposed exponential 

filter can be written as follows: 

For n and r from 1 to L:

- Calculation of the adaptive filter output using (2). 

-Coefficients adaptation: For i and j from 
2

1−
−

p
 to 

2

1−p

( ) ),(),(),( rnEyrnWrndµWW −+= .

5. TEXTURE CHARACTERIZATION WITH THE 

NON-LINEAR EXPONENTIAL FILTER  

Consider a set of ten different gray-scale textures of 

(256×256) pixels (Figure 2) extracted from the Brodatz 

album [1]. In order to check whether the use of the non-

linear exponential filter improves the texture 

characterization in comparison with the linear filter, we 
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propose to evaluate the characterization efficiency of the 

coefficient estimated by each filter.  

Fifty images of (64×64) pixels are randomly chosen from 

each texture class of Figure 2. We calculate the texture 

coefficients using both adaptive filters for the 500 images. 

Note nkx ,  the nth
 estimated coefficient vector for the kth

texture class. The mean of the kth
 texture class coefficient 

vectors is ∑
=

=
50

1
,50

1

n
nkk xµ  and ∑

=
=

10

1
10
1

k
kc µµ  is the mean of 

all the coefficient vectors. 

We define a characterization rate J as ( )erra SStraceJ int
1

int .−= .

The matrix raSint  is the mean of the within-class (intra-

class) dispersion matrix given by : 
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The matrix erSint  is the mean of the between-class (inter-

class) dispersion matrix calculated by 
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The greater the characterization rate is, the more robust the 

classification process is. The comparison of the capability 

of the filter coefficients will be presented through the next 

experiments. 

Experiment 1: Influence of the filter order 

The aim of the following experiment is to compare the 

capability of the non-linear exponential filter and 2-D 

linear filter in texture classification for different 2-D filter 

order. Hence, as stated above, we use the characterization 

rate J based on the dispersion ratio as a comparison 

criteria. This rate is calculated for different filter orders 

ranging from 3×3 to 7×7 (odd values) without any additive 

noise. Figure 3 depicts the characterization rate with 

respect to the 2-D filter orders. The step size is equal to 0.4 

for both models. The size of the image is 64×64. It should 

be noted that for any order, the characterization rate 

provided by the exponential adaptive filter is greater than 

the one provided by the linear adaptive filter. Furthermore, 

the coefficients seem to give better characterization rate 

for a high filter order. 

Experiment 2: Influence of and additive noise 

The 2-D filter order is fixed to 5×5. We plot the 

characterization rate for both adaptive with respect to the 

Signal to Noise (SNR) value in the case of additive 

gaussian noise (Figure 4). Clearly, The characterization 

rate of the exponential adaptive filter is greater than that of 

the 2-D linear filter. For both filters, the increase of 

additive noise variance causes attenuation in the 

characterization rate. The additive noise perturbs the 

classification process. Therefore, the non-linear 

exponential filter based coefficients are better texture 

discriminators than those of the linear filter ones. 

Figure 2: Ten texture images used in the study 

Figure 3: Characterization rate of the 2-D exponential filter and 

the 2-D linear filter with respect to the filter orders. 

Figure 4: Characterization rate of the 2-D exponential filter and 

the 2-D linear filter for various SNR values. 
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Experiment 3: Influence of the image size 

The characterization rate is now calculated for different 

image sizes ranging from 16×16 to 128×128 pixel, without 

any additive noise and for a filter order of 5×5.

Figure 5 depicts the characterization rate with respect to 

the image sizes. The characterization rate provided by the 

exponential adaptive filter is superior than the one 

provided by the linear adaptive filter. For a large image 

size, the performance of the classification becomes high. 

Experiment 4: Texture classification with a neural 

network 

In this last experiment, our purpose is to test the ability of 

the proposed non-linear model to classify images issued 

from the 10 textures of Figure 2 with a multi-layer neural 

network trained with data provided from both linear and 

exponential filters. The 2-D coefficients estimated from 

500 images of 64×64 pixels (50 images randomly chosen 

from each texture) are used as input vectors to the 

multilayer neural network. The network is trained using the 

gradient descent back- propagation algorithm [7] with 50% 

of the available texture images (250 images of 64×64

pixels) and tested with the other part. The network weights 

were updated on each presentation of a feature vector. The 

set of training examples is changed at each iteration and 

their order is randomly chosen. For each texture, we define 

the classification sensitivity as the ratio of the number of 

positive tests to the total number of tests. In order to 

determine the optimum neural network to achieve a 

maximal classification sensitivity for each algorithm and 

each SNR value, we carried out several experiments using 

various architectures, that is: various training coefficients 

and various numbers of neurons in each layer. We used 

two hidden layers and three binary coded outputs. The 

momentum was 0.9 and the initial random values of the 

weights were set between –1 and 1. The threshold value of 

the network sigmoid was 0.2. In Table 1, we present 

respectively the results of classification sensitivity 

obtained with the coefficients of the 2-D exponential and 

the 2-D linear models. 

Model Noise- 

less 

SNR 20 

dB 

SNR 10 

dB 

SNR 0 

dB 

Linear  100 % 100 % 94 % 85 % 

Exponential  100 % 100 % 99.2 % 86 % 

Table 1: Classification sensitivity for both 2-D filters 

These results show that, in comparison with the 

coefficients of the linear model, the coefficients of the 

exponential model provide excellent performances for 

texture classification, even for low SNR. These results 

confirm the conclusion of the last experiments and can be 

interpreted by some non-linear nature inside the texture 

image. 

Figure 5: Characterization rate of the 2-D exponential filter and 

the 2-D linear filter versus the texture image size 
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