
AN INDEPENDENT COMPONENT ANALYSIS BASED IMAGE CLASSIFICATION SCHEME 

E. Thomas Gilmore1, Preston D. Frazier, Ph.D.,P.E.2, and M. F. Chouikha, Ph.D.1

1-Howard University  and 2-General Dynamics Advanced Information Systems Corporation  
egilmore@comcast.net, preston.frazier@gd-ais.com, and mchouikha@howard.edu 

Abstract-In this paper, an image classification scheme based on 
Independent Component Analysis (ICA) is proposed.  The 
scheme used independent components as image templates for 
which an image was projected.  The output of the image 
projection was fed to a classifier.  Three classifiers were 
presented using this approach.  The experiment results were 
presented with extensive simulations documenting how well this 
method classified images. 

I. INTRODUCTION 

     Independent Component Analysis (ICA) is emerging as a new 
standard area of signal processing and data analysis [1].  ICA 
attempts to solve the blind source separation problem in which 
sensor signals are unknown mixtures of unknown source signals 
[2].  While there are no general analytical solutions, in the last 
decade researchers have proposed good approximate methods 
based on simple assumptions about the source statistics and 
using maximum likelihood, information maximization and 
minimization of higher-order moments.  
     ICA theory has received attention from several research 
communities including machine learning, neural networks, 
statistical signal processing and Bayesian modeling. More 
recently numerous applications of ICA have appeared including 
applications to adaptive speech filtering, speech signal coding, 
biomedical signal processing, image compression, text modeling 
and financial data analysis [4], [5], [6]. 

II. INDEPENDENT COMPONENT ANALYSIS 
BACKGROUND 

     This section will provide a brief overview of ICA.  ICA is a 
statistical and computational technique for revealing hidden 
factors that underlie sets of random variables, measurements, or 
signals [3].  
     ICA defines a model for the observed multivariate data, 
which is typically given as a large database of samples. In the 
model, the data variables are assumed to be linear or nonlinear 
mixtures of some unknown latent variables, and the mixing 
system is also unknown. The latent variables are assumed non-
Gaussian and mutually independent and they are called the 
independent components of the observed data. These 
independent components, also called sources or factors, can be 
found by ICA.  
     ICA can be seen as an extension to principal component 
analysis and factor analysis. ICA is a much more powerful 
technique, however, capable of finding the underlying factors or 
sources when these classic methods fail completely.  

     Using vector-matrix notations, the ICA mixing model is 
written as  

Asx =  (1) 

where x is the observation, A is the mixing matrix, and s are the 
independent components, respectively.  Or, if using the columns 
of matrix A, denoting then by aj, the model can also be written as 
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     The ICA model is a generative model, which means that it 
describes how the observed data are generated by a process of 
mixing the components si. The independent components are 
latent variables, meaning that they cannot be directly observed.  
Also the mixing matrix is assumed to be unknown.  The only 
observation is the random vector x, and we must estimate both A
and s using it. 
     This proceeding section provides an overview of the 
classification algorithm.  There are two broad areas of 
classification: supervised and unsupervised.  For this paper, the 
supervised approach was examined for the classification scheme 
shown is Figure 1.  Supervised classification, often called 
discriminant analysis in statistics, requires the knowledge of the 
classes, and seeks to find the rule for best separating the groups 
based on the measured variables. 
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Figure 1.  Classification Block Diagram. 

III. METHODOLOGY 

     The architecture for the classification scheme can be 
decomposed into five parts. 
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A.  Preprocessor 
     Prior to classification, scaling the raw image to a normalized 
form preprocesses the image.  First, the center of mass of a 
threshold version of the image is computed, and the image is 
centered on its centroid.  The determination of the correct 
presentation orientation may improve classification performance. 

B.  ICA Templates 
     Once the input image has been preprocessed, it’s projected 
onto a series of ICA templates.  The templates, consists of a set 
of independent components derived from a set of clustered 
training data.  Performing the projection between the template 
and input image provides a set of coefficients, which are in turn 
fed to a filter. 

C.  Filter 
     The filter is a hard limiting function, which selects the 
maximum coefficient set generated from the projection.  This 
coefficient set is fed to the classifier for classification. 

D.  Classification 
     Based on the coefficients generated from the filter, the 
following classifiers were trained and tested: 

• Vector Quantization [10] 
• Neural Network [7], [8], [9] 
• Fisher Classifier 

Training and testing were preformed using the public release of 
the MSTAR target chips from the Air Force Research 
Laboratory.  The results and extensive simulations of the 
classifiers are presented in the following section. 

IV. EXPERIMENTAL CONDITIONS 

     The data sets used for this experiment were from the public 
MSTAR release.  Training images consisted of BMP2 SN 9563 
tanks at a 17-degree depression angle.  A total of 233 images 
were used distributed over four classes: 

• Class 1 – 61 images 
• Class 2 – 60 images 
• Class 3 – 51 images 
• Class 4 – 61 images 

The tank targets at a particular range of azimuths represent each 
class (shown in Figures 2-9). 
     For purposes of the classification experiment, two sets of 
independent component templates were constructed, i.e., 2 
independent components per class and 4 independent 
components per class.  The independent components were 
obtained from each of training data classes, i.e., 2 or 4 
independent components were obtained by using the class 
member images as the mixed signal. 
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Figure 2.  Class 1 – Independent Component 1. 
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Figure 3. Class 1 – Independent Component 2. 
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Figure 4. Class 2 – Independent Component 3. 
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Figure 5. Class 2 – Independent Component 4. 
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Figure 6. Class 3 – Independent Component 5. 
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Figure 7. Class 3 – Independent Component 6. 
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Figure 8. Class 4 – Independent Component 7. 
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Figure 9. Class 4 – Independent Component 8. 

Testing was completed using 64 BMP2 SN 9563 tank images, 
also from the public MSTAR release, at a 15 degree depression 
angle (16 test images per class), as shown in Figures 10 and 11. 

Sample Test Image

20 40 60 80 100 120

20

40

60

80

100

120

Figure 10.  Sample Test Image. 

Sample Test Image
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Figure 11.  Sample Test Image. 

V. CLASSIFICATION RESULTS 

     The classification results for two experiments are shown in 
Figures 12 and 13 for three different classifiers: Vector 
Quantization (VQ), Fisher Classifier, and a Neural Network 
(NN).  Using two independent components, the classification 
accuracy achieved during training was approximately 76% for 
VQ, 83% for the Fisher Classifier, and 82% for the NN, and 
testing yielded accuracies of 73% for VQ, 75% for the Fisher 
Classifier, and 75% with the NN. 
     Using four independent components, the classification 
accuracy improved for training accordingly:  84% for VQ, 88% 
for Fisher, and 86% for NN.  The testing accuracy achieved was 
80% for VQ, 81% for the Fisher Classifier, and 83% for NN. 
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Classification Ability - 2 Independent Components
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Figure 12: Classification Accuracy with 2 Individual 
Components. 

Classification Ability - 4 Independent Components
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Figure 13: Classification Accuracy with 4 Individual 
Components. 

VI. CONCLUSIONS 

     The algorithm for classification presented here is based on an 
approach using ICA to model the structure of the image filters or 
templates.  Results of classification using VQ, the Fisher 
Classifier, and a multi-layer NN have been presented showing 
better performance for the Fisher Classifier.  It is seen that the 
use of additional ICA templates improved classification.  Future 
work involves investigating additional classifiers, i.e. the 
Support Vector Machine [11] and Learning Vector Quantization 
(LVQ) for comparison to the classifiers presented here.  The 
eventual goal of the classification scheme presented here is an 
alternative approach to Automatic Target Recognition (ATR) 
applications. 
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