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ABSTRACT

The coefficients of the wavelet transform have been widely
used for texture analysis tasks, including segmentation, clas-
sification and synthesis. Second order statistics of such val-
ues have been shown to give excellent performance in these
applications, and are typically calculated using co-occurrence
matrices, which require quantisation of the coefficients. In
this paper, we propose a non-linear quantisation function
which is experimentally shown to better characterise tex-
tured images, and use this to formulate a new set of texture
features, the wavelet log co-occurrence signatures.

1. INTRODUCTION

The wavelet transform has emerged over the last two decades
as a powerful new theoretical framework for the analysis
and decomposition of signals and images at multiple reso-
lutions [1]. One of the most common forms of the transform
used for image analysis applications is the separable two di-
mensional wavelet transform, defined as

Aj = [Hx ∗ [Hy ∗ Aj−1]↓2,1]↓1,2 (1)

Dj1 = [Gx ∗ [Hy ∗ Aj−1]↓2,1]↓1,2 (2)

Dj2 = [Hx ∗ [Gy ∗ Aj−1]↓2,1]↓1,2 (3)

Dj3 = [Gx ∗ [Gy ∗ Aj−1]↓2,1]↓1,2 (4)

where G and H are the high and low-pass filters along the
subscripted axis, ∗ is the convolution operator, j is the res-
olution level, and ↓ a, b represents downsampling along the
x and y axes by factors of a and b respectively. The re-
sulting images Aj and Dji, i ∈ {1, 2, 3} are known as the
approximation and detail coefficients respectively.

Initial research into the use of the wavelet transform
for the purpose of texture analysis focussed on using the
energy of each wavelet band as a feature for texture char-
acterisation [2, 3]. More recently it has been shown that
using the second order statistics of the wavelet transform
coefficients can provide a better representation of texture,
with significantly reduced error rates in classification ex-
periments [4]. Using this technique, second order statistical

features of the wavelet coefficients are extracted by means
of co-occurrence matrix features. Such a matrix is formed
by using uniform quantisation to map the continuous valued
coefficients resulting from an overcomplete wavelet frame
representation to the discrete indices of the co-occurrence
matrix. In order to reduce the total number of features,
the co-occurrence matrices are averaged over the four di-
rections {0◦, 45◦, 90◦, 135◦}, and restricted to a distance of
one pixel. Thus, only one co-occurrence matrix from each
detail subband is created. Extracting common co-occurrence
features from each such matrix for the first four levels of de-
composition gives a total of 96 features, which the authors
refer to as co-occurrence signatures [4].

In this paper we propose a method of quantising the
wavelet coefficients based on the logarithm function which
leads to an improved representation for many textures. The
validity of using such a function is experimentally proven by
showing that image reconstruction can be performed with
lower distortion when compared to uniform quantisation of
the wavelet coefficients. Three separate feature sets which
represent second order statistics of the coefficients are then
proposed and experimentally evaluated, with the results show-
ing improved classification accuracy compared to existing
texture features.

2. LOGARITHMIC QUANTISATION OF WAVELET
COEFFICIENTS

It has been observed by a number of authors that the wavelet
coefficients of natural and other textured images are non-
Gaussian in nature, and often contain large peaks at the
origin and long tails [5, 6, 7]. In spite of this, the vast
majority of texture features extracted for classification of
such images, such as the energy or mean deviation of each
band, assume a Gaussian-like distribution of these coeffi-
cients. Examples of the distribution of wavelet coefficients
of textured images and the corresponding Gaussian distri-
butions are shown in figure 1. These examples show the
errors which are introduced using such a model. Using a
generalised Gaussian function to model the distribution of
coefficients, as proposed by Van de Wouwer et. al. [4] can
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Fig. 1. Histograms of wavelet coefficients for (a) well
matched, and (b) mismatched images. The dotted line
shows the Gaussian distribution of equal variance com-
monly used to model such distributions.

in many cases overcome such limitations, however in gen-
eral is still inadequate for representing texture.

When calculating many second order statistics, it is of-
ten necessary to perform quantisation of the continuous wavelet
coefficients, and such a process of typically performed in a
linear manner, described by

q(x) = round

(
I

x

as

)
(5)

where x is the value being quantised, As is the saturation
level of the quantiser, I is the desired number of quantisa-
tion levels, and round(·) represents rounding to the nearest
integer value. Such a function, when used with a sufficient
value of I , does not substantially alter the shape of the his-
togram, and thus still suffers from the poor modelling pre-
viously described for most natural textures. Other quanti-
sation techniques, such as Lloyd-max optimal quantisation,
overcome this problem by using non-uniform decision re-
gions to ensure the mean-squared error is minimised [8].
Although this is of great benefit in compression applica-
tions, it cannot be used in a classification task as the quan-
tiser must be recalculated for each individual image.

By modifying the quantisation function q(x), it is also
possible to significantly alter the shape of the resulting his-
togram. In order to remove the long tails of the histogram
that make modelling of the coefficients difficult, a function
is required that compacts the histogram at the high limit.
One example of such a function is the logarithm, and this
shall be the focus of further investigation. One implementa-
tion of logarithmic quantisation of a continuous variable x
can be realised by transforming x such that uniform quanti-
sation of the resulting variable can be performed. An ideal
case of this transform would map each threshold value ai to
the linear center of the new quantisation cell, ie 2i−1

2 , giving

q(x) = round

[
κ log

(
x

asδ
+ 1

)
+ 1/2

]
(6)

where

κ =
I − 1

log (1/δ + 1)
(7)

Thus, to design a logarithmic quantiser having I levels, know-
ing the desired saturation point as, it is required to choose
only one parameter δ > 0, the non-linearity factor. Lower
values of δ indicate a high level of non-linearity in the trans-
form, and as δ → ∞, the quantiser becomes a uniform
quantiser. By removing the addition of 1

2 from (6), it is
possible to make the quantiser symmetric about the origin.

The non-linear transform described in (6) is in some
ways similar to that proposed by Unser and Eden, who sug-
gested that a logarithmic function applied to wavelet coef-
ficients yields a more stable representation and better class
separation in the context of texture segmentation [9]. In
their work, a second non-linearity was also applied to the
coefficients before the logarithm function in order to remove
the sign of the coefficients. Since the wavelet detail coeffi-
cients are zero-mean, and their histograms generally near-
symmetric about the origin (see figure 1) [4], the sign of
each coefficient is relatively unimportant and such an oper-
ation results in little loss of useful information. In [9], Unser
and Eden show that taking the square of the coefficients
leads to the best characterisation of the textures. Modify-
ing (6) to include this operator gives

q1(x) = round

[
κ log

(
x2

a2
sδ

+ 1
)]

(8)

Another possible choice for this rectifying function is the
magnitude operator | · |, which gives

q2(x) = round

[
κ log

( |x|
asδ

+ 1
)]

(9)

Using the proposed quantisation function on the wavelet
coefficients of textured images has the effect of shortening
the tails of the resulting histograms, while decreasing the
large peak typically found at the origin. Such histograms are
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Fig. 2. PSNR(dB) vs δ for 4, 8, 16 and 32 quantisation
levels.

then able to be better modelled by a Gaussian distribution,
leading to improved characterisation of the texture by both
first and second order statistics.

2.1. Image Distortion

The application of the logarithmic quantisation function de-
scribed above to the wavelet coefficients of a textured image
necessarily causes some distortion of this image if recon-
struction is performed. Measurement of this distortion is
possible using the peak signal to noise ratio (PSNR) which
compares the original image to the distorted version. The
PSNR of a modified image is defined as

PSNR = 20 log10(r/ε) (10)

where ε is the RMS error between the reconstructed and
original images, and r is the dynamic range of the image.
A number of texture samples were quantised using the pro-
posed technique, and the images reconstructed from the re-
sulting coefficients. Since the sign of the coefficients is
lost during the quantisation process, this information is re-
instated before calculating the inverse DWT. The averaged
PSNR over these images for a number of quantisation lev-
els and values of δ is shown in figure 2, with the PSNR
for uniform quantisation being 41.71dB, 35.82dB, 29.82db
and 23.46dB for 32, 16, 8 and 4 levels respectively. From
these results it can be seen that the logarithmic quantisa-
tion technique provides a significantly better representation
of the textures, with the PSNR peaking at approximately
δ = 0.001 for 32 levels. It must be noted that PSNR is not
always an accurate measure of perceived image quality, and
that this value of δ may not be optimal for use in all texture
classification tasks.

2.2. Wavelet Log Co-occurrence Signatures

The wavelet co-occurrence signatures proposed in [4] are
extracted from a co-occurrence matrix constructed using uni-
form quantisation of the original wavelet coefficients. In
this section, a new feature set is proposed utilising the loga-
rithmic quantisation function developed previously. Three
variations on this set are proposed for evaluation, with a
different non-linearity applied before quantisation in each
case. Thus, a wavelet log co-occurrence matrix Pj,l,d,θ(i, j)
can be defined as the probability of two pixels from the
wavelet detail image Djl separated by distance d and an-
gle θ having quantised values of i and j respectively, using
one of three quantisation functions

q1(x) =

⎧⎨
⎩

round
[
κ log

(
x

asδ + 1
)]

, x >= 0

−round
[
κ log

(
|x|
asδ + 1

)]
, x < 0

(11)

q2(x) = round

[
κ log

( |x|
asδ

+ 1
)]

(12)

q3(x) = round

[
κ log

(
x2

a2
sδ

+ 1
)]

(13)

q1(x) quantises the wavelet coefficients with no rectifying
function, and thus requires twice as many quantisation lev-
els to allow for negative values. q2(x) and q3(x) use the
magnitude and squaring operators respectively to rectify the
coefficients before quantisation.

From such matrices, the following co-occurrence fea-
tures are extracted: energy, entropy, inertia, local homo-
geneity, maximum probability, cluster shade, cluster promi-
nence and information measure of correlation. A mathe-
matical description of these features can be found in [4]. In
order to avoid an excessively large number of features, the
value of d is restricted to 1, and the matrices for the four di-
rections {0◦, 45◦, 90◦, 135◦} are averaged to form a single
matrix for each detail image Djl. As correlations over small
distances have been shown to provide the majority of infor-
mation, this process does not result in a significant loss of
classification accuracy. A total of 24 features are therefore
extracted at each resolution level of the wavelet transform.
For four decomposition levels, this leads to a total of 96 fea-
tures, which we call the wavelet log co-occurrence (WLCk)
signatures, with k ∈ {1, 2, 3} indicating the quantisation
function used.

3. EXPERIMENTAL RESULTS

The performance of the wavelet log co-occurrence features
was evaluated experimentally using a selection of 25 texture
images from the Brodatz database [10]. The original plate
number of these images are D1, D3, D4, D5, D9, D11, D16,
D18, D19, D21, D24, D29, D37, D52, D53, D55, D68, D76,
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Wavelet Wavelet WLC1 WLC2 WLC3

Energy Co-oc. δ = 10−3 δ = 10−3 δ = 10−4

6.7% 2.7% 1.4% 2.0% 1.8%

Table 1. Classification errors for wavelet log co-occurrence
signatures compared to wavelet energy features and wavelet
co-occurrence signatures extracted with uniform quantisa-
tion. In all cases, the value of k giving the lowest error rate
is used.

D77, D80, D82, D84, D93, and D112, and were chosen
on the basis of being relatively uniform in appearance and
either non-directional or unidirectional in nature. Addition-
ally, the classification performance using the simple wavelet
energy signatures on this set of images is poor enough to al-
low for a meaningful comparison between the techniques.
Each of the images was divided into non-overlapping re-
gions of size 64x64, providing a total of 100 sample images
for each texture class.

The proposed wavelet log co-occurrence signatures were
extracted from these samples using each of the three quan-
tisation functions, with 32 quantisation levels used in all
cases. For comparison, the wavelet co-occurrence signa-
tures proposed in [4] using uniform quantisation are also
extracted with the same number of levels, as well as the
wavelet energy features which have been widely used as a
benchmark in the literature. Using a k-nn classifier, each
sample image was classified, with the results shown in ta-
ble 1. The leave-one-out technique was used to generate
these results, as it has been previously shown to give an up-
per bound of the Bayes’ error, and is thus a conservative
estimate of actual classifier performance.

From the results of table 1, it can be seen that all of the
WLC signatures outperform the uniformly quantised wavelet
co-occurrence signatures, with the WLC1 features show-
ing error rates reduced by approximately 50% overall. The
WLC2 and WLC3 signatures, in which the coefficients were
rectified using the magnitude and squaring operators respec-
tively, did not perform as well as the non-rectified WLC1

signatures, from which it can be concluded that the sign
of the coefficients is of some importance when calculating
second-order statistics. Examination of the class error dis-
tributions shows that the WLC1 features provide a lower er-
ror rate than the uniformly quantised wavelet co-occurrence
features for all but a single class, with particular improve-
ment noted for the D9 image, which was poorly classified
by the standard wavelet co-occurrence features.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new approach to the quan-
tisation of wavelet coefficients, and shown that using such

an approach can lead to a better characterisation of textured
images. Using this approach, three new texture feature sets,
the wavelet log co-occurrence signatures have been pro-
posed. Experimental results have shown that these features
outperform similar features extracted from co-occurrence
matrices using uniform quantisation when applied to a range
of natural textures from the widely used Brodatz album.
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