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ABSTRACT 

We present a novel “dynamic learning” approach for an 

intelligent image database system to automatically 

improve object segmentation and labeling without user 

intervention, as new examples become available, for 

object-based indexing. The proposed approach is an 

extension of our earlier work on “learning by example,” 

which addressed labeling of similar objects in a set of 

database images based on a single example [1]. It utilizes 

multiple example object templates to improve the accuracy 

of existing object segmentations and labels. We also 

propose to use Normalized Area of Symmetric Differences 

(NASD) as the similarity metric in “dynamic learning”, 

due to its robustness to boundary noise that results from 

automatic image segmentation. The performance of the 

dynamic learning concept is demonstrated by experimental 

results. 

1.  INTRODUCTION 

Humans navigate through and retrieve samples from large 

image/video databases by means of semantic concepts, 

such as, objects, people, etc. However, most current 

multimedia systems can only process low level visual 

features, such as color, texture, shape, etc [2, 3] in an 

automatic fashion. “Learning” approaches have been 

proposed to automatically compute high-level semantic 

concepts from low-level visual features. These approaches 

can be classified as: 1) Learning from interactive user 

feedback, i.e. relevance feedback, and 2) Learning from 

examples without run-time user interaction.  

Relevance feedback [4-7], requires user responses to 

indicate relevant or irrelevant items in a search to: 1) 

establish either positive or negative links between 

retrieved images and query objects, 2) update the weights 

of various feature dimensions in a given vector space; or 

3) enhance the probability distribution of a proposed 

Bayes model for the images in the database. Its potential 

drawbacks are slow convergence, sensitivity to user 

subjectivity, and inability to propagate the “knowledge” 

cultivated during the current query session to later queries. 

“Learning from example,” on the other hand, attempts to 

create semantic abstractions for images containing regions 

determined to match user provided examples based on 

similarity of low-level visual features [1]. An attractive 

benefit of this scheme is automatic abstraction of semantic 

objects without user intervention.  

This paper extends our prior methods [1] to “dynamic 

learning from multiple sequential examples.” This 

extension poses new challenges in resolving potential 

conflicts between various semantic abstractions resulting 

from different example templates and rank ordering of 

similarities. The proposed “dynamic learning” scheme 

refines the segmentation mask of the object and updates 

the semantic abstractions when a new example provides a 

better match than previously existing one(s). Its main 

advantages are: 1) its self-correction capability, 2) its 

automatic nature requiring no user intervention, and 3) its 

flexibility for offline computation  

The remainder of this paper is organized as follows. 

Section 2 presents a new shape similarity metric, which 

has such desirable properties. Section 3 introduces the 

proposed data representation and query strategies for the 

proposed dynamic learning system. Section 4 presents the 

concept and procedure for “dynamic learning.”

Experimental results are presented in Section 5. 

Conclusions are drawn in Section 6.

2.  A NEW SHAPE SIMILARITY MEASURE 

The proposed dynamic learning procedure requires 

ranking of similarities among combinations of image 

regions and multiple objects templates, i.e., we need to 

find not only the best match to a given object template 

among many image regions, but also the best match 

between a given image region and many object templates. 

Therefore, it is desirable that the similarity measure be: 1) 

metric, i.e., it should not only be good for a threshold test, 

but also for ranking; and 2) symmetric, i.e., similarity 
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measure should be invariant whether it is computed in the 

image or template domain. 

We propose a new shape similarity metric, called 

Normalized Area of Symmetric Differences, which is 

normalized to remove the effect of size of the candidate 

region or template on the similarity measure, that satisfy 

the above requirements.  It is given by: 
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where A and B represent two shapes, (A+B) is the area of 

the union of two regions, (A-B) denotes the area over by A 

but not by B, (B-A) is vice versa. The properties of the 

Normalized Area of Symmetric Differences measure 

include: 1) it is a metric, 2) it is robust against small 

changes in the shapes A and B, and 3) it is invariant to 

rotation, translation, and scaling. 

Before computing the NASD, the contours of the 

shapes A and B are approximated by B-splines, and then 

registered in either the image or template domain. It is 

well known that B-spline representation and modal 

matching can suppress contour noise due to low-level 

segmentation errors. Hence, we adopted the modal 

matching approach[1] to establish feature correspondences 

between the template and candidate region. These 

correspondences are then used to estimate the affine 

transform parameters between the two shapes. Upon 

computation of the affine transform parameters, the image 

region and template are registered, and the NASD is 

calculated.  

3. DATA STRUCTURE AND QUERYING 

We start with a short review of the image representation 

and data structure used in our original learning method 

(referred to as static learning here). We represent images 

by a "scene graph” which consists of a tree that indicates 

the parent-child relationships between high-level objects 

and low-level (elementary) image regions, and an 

adjacency matrix that captures the spatial relationships 

between these elementary regions [1]. The root node of the 

tree corresponds to the whole image. Each leaf node (also 

called elementary node) represents a homogeneous image 

region with uniform color or texture. “Learning from 

example” refers to storing those combinations of regions 

that are similar to the example objects, in the form of 

composite nodes. The implementation of the learning 

process requires searching all valid combinations of 

elementary regions (as determined by the adjacency 

matrix) in an image for shape and/or color similarity to a 

user provided example template. A match is established 

when the similarity measure between a particular 

combination of elementary nodes and the example 

template is less than a pre-determined threshold yielding a 

composite node containing the matching combination of 

elementary nodes. The composite node provides a level of 

semantic knowledge over and above the original scene 

graph containing only low-level nodes. As a result, 

subsequent searches using the same example template 

would immediately identify the composite node as a match 

without processing its lower level. 

 For dynamic learning from multiple examples, we 

introduce a new data structure for each database image, 

called Object vs. Template Similarity Table (OTST) (see 

Table 1), where each row and column corresponds to a 

potential object and an example template, respectively. 

OTST provides a means for ranking the similarity of each 

composite node vs. each example template. 
Table 1 Object-Template Similarity Table for Image I

i\j Template1 Template2 … 

C1 D (C1, T1) d(C2, T2) … 

C2 D (C2, T1) d(C2, T2) … 

… … … … 

Before any learning can take place, the database 

images have only low-level regions; hence the OTST is a 

null table. For each image I, the OTST is populated, as 

learning takes place with the introduction of each example 

template Tj. Matches found during similarity search 

between Tj and combinations of elementary nodes lead to 

creation of new composite nodes. These are entered in the 

OTST as new rows. Their similarity to other example 

templates is also computed and logged into the OTST. A 

reject threshold, which is introduced only to keep the size 

of the OTST reasonable, can be set rather loosely, and it is 

the only threshold involved in the proposed dynamic 

learning procedure 

 The query engine supports three types of queries 

using the OTST and returns the best N matching database 

images to the query (example) template. These are: 1) 

Query by known example: the query template is already in 

the OTST, only ranking of values needs to be done at the 

time of query, 2) Query by new example: the system first 

updates the OTST as described above; the updated OTST 

is then used to generate the rankings, and 3) Query by 

keyword: there is no specific labeling information stored 

in the OTST, Links between object templates and 

keywords may be established at the query user interface, 

then system performs query-by-template. 

4. DYNAMIC LEARNING 

In our original static learning method [1], composite nodes 

(the grouping of the elementary nodes) stay permanent 

once they are created. Depending on which example 

template is presented first, it is possible that a composite 

node is formed by a non-optimal grouping of elementary 

nodes. In static learning, there is no possibility of updating 

a composite node with new examples. The “dynamic 

learning” concept rests on the assumption that a portion of 

a “real” life object is less similar to a given template than a 

complete object is to its own template. To this effect, 
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composite nodes that are already established can be later 

updated when new example templates become available 

(self-correction). Hence, the grouping of elementary nodes 

is dynamic and the learning is ongoing as new example 

template become available.  

4.1 Dynamic Learning Concept 

The strategy of updating existing composite nodes can be 

summarized as follows: When an existing composite node 

is found to also match a new (later) example template, the 

low-level regions making up the composite node and all 

neighboring regions are re-searched to find if a better 

match to the new example template exists.  When such 

search yields a different more optimum grouping of 

elementary nodes that is better matched to the object 

template than the existing composite node matches to any 

of the existing templates, the existing composite node is 

destroyed and a new composite node is created 

The main concepts of “static vs. dynamic learning” 

are illustrated by the example in Figure 1. In general, when 

a new object template is introduced in the database, all the 

images are searched for the object as part of the “learning” 

process. The search can be performed either online, 

directly as the user is retrieving images through “query by 

new example”, or offline by employing the user search 

profile. Either way, each image in the system is searched 

for the new object template by applying the hierarchical 

content matching strategy described above. 

4.2 Guided Search Procedure for Dynamic Learning 

Guided search refers to finding the best matching 

composite node C* to a new example template T in the 

neighborhood of an existing composite node C, taking 

advantage of the established match between T and C. The 

first step is to set up the search scope based on information 

provided by the existing match. As presented in [1], 

correspondences between the image region and the 

template have been established in the matching process. 

These correspondences are employed to estimate the affine 

transform that maps the object template into the image 

domain. This mapping is then utilized to classify all 

elementary nodes in three categories: 1) elementary node 

is fully covered by the template{F}, 2) elementary node is 

partially covered by the template{P}, and 3) elementary 

node doesn’t intersect with the template {N}. We limit the 

scope of the search to {F}+{P}, thereby significantly 

reducing the computational complexity of the search. 

The second step is to find the best match to the 

template in the search scope {F}+{P}. To this effect, all 

nodes in {F} are pre-determined to be part of any potential 

match thereby taking full advantage of the previously 

known best match. Hence, the procedure reduces to 

determining whether each of the elementary nodes in {P} 

should be incorporated into the existing composite node to 

form a more suited match. This is accomplished by 

computing a corresponding matching score using the 

techniques discussed in Section 2. The “closest” 

combination to the object template is compared against the 

similarity of the existing composite node. The composite 

node is rebuilt with a new grouping of elementary nodes if 

it yields the best similarity measurement.  

There are a couple of advantages in dynamic learning 

with the described search strategy: 1) It automatically 

corrects inaccurate groupings of elementary nodes stored 

in existing hierarchical content descriptions yielding a 

better and more accurate semantic abstraction for the 

images, and 2) It significantly reduces the computational 

cost of finding the best match to the new example template 

by taking advantage of the previously established match.  

5. EXPERIMENTAL RESULTS 

5.1 Shape Matching Similarity Measure Comparison 

As we discussed in Section 2, the NASD similarity 

measurement has several distinct advantages over the 

previously utilized Hausdorff distance [1]. Here, in Figure 

2, we present a direct comparison between these two 

metrics. Table 2 provides the results for the manual versus 

automatic segmentations using the Hausdorff and NASD 

metrics. From the table, it can be easily seen that both 

measures increased (depicting lesser similarity) for the 

automatic segmentation (Figure 2c) when compared with 

the “ground truth” (Figure 2d); a reasonable expectation 

since most automatic segmentations are much less accurate 

than their human prepared counterparts. However, the 

Hausdorff distance increased much more drastically 

compared to the NASD as demonstrated by the percentage 

difference in Table 2. Hence, the NASD is much less 

sensitive to boundary noise and segmentation errors. 
Table 2 Comparison of Similarity Measurements 

 Hausdorff 

Distance 

Normalized Area of 

Symmetric Differences 

Semi-manual 

Segmentation 

8.663 0.276 

Automatic 

Segmentation 

14.623 0.300 

Difference in % 68.8% 8.7% 

5.2 Dynamic Learning Experiments 

To test the performance of the dynamic learning scheme 

for object based image labeling, experiments were 

performed on a large dataset using multiple object 

templates. Figure 3 shows representative images. As can 

be seen from Figure 3c, the search of “Sedans” template 

yields “SUV” type objects since they have a close 

similarity. Subsequently, a composite node, capturing the 

initial regions in the segmentation map that correspond to 

the object, is introduced into the content hierarchy for each 

image. However, a close examination of the first two 

images reveals that their corresponding composite node 

has succeeded in capturing the regions of the “SUV” that 
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match that of a “Sedan” and did not incorporate the 

“hatchback” portion of the “SUV” since it does not match 

well to a “Sedan”. In the “static learning” scheme, the 

composite nodes generated after searching for Template 1 

are “permanent” without any opportunity for updates. 

Table 3 Results for Static vs. Dynamic Learning 

OTST by Static learning OTST After dynamic learning 

Comp. 

Nodes 

T. 1 T. 2 Comp. 

Nodes 

T. 1 T. 2 

Img1/C1 0.202 0.408 Img1/C1* 0.211 0.123 

Img2/C1 0.181 0.293 Img2/C1* 0.234 0.176 

Img3/C1 0.095 0.230 Img3/C1 0.095 0.230 

Img3/C1 0.208 0.314 Img3/C1 0.208 0.314 

To improve this scenario, we utilize the proposed 

concept of dynamic learning. Figure 3e, 3f and 3g show 

the result of dynamic learning using Template 2. The 

process did not affect the last two images since they are 

not “SUVs”. For the first two images, the search confirms 

that incorporating the “hatchback” regions (the previously 

missing regions) yields a better similarity to Template 2 

than the previously formed node (see Figure 3d) to 

Template 1. At this point, the composite node hierarchy is 

reconstructed to reflect the above. Furthermore, the OTST 

is updated accordingly as shown in Table 3.  

6. CONCLUSION 

This paper presents a novel approach to dynamically 

improve object segmentations and labeling without user 

intervention for object-based indexing. “Dynamic 

learning” process updates the links between composite 

nodes and groupings of elementary nodes as new examples 

are introduced. Its main advantage is that inaccurate 

semantic abstractions of images are automatically 

corrected in the process of learning from new examples; In 

addition, “dynamic learning” does not require any user 

intervention; and can be performed offline. 
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     (a)                       (b)                      (c)                      (d)                    (e)                   (f)                (g)                  (h)                      (i)  

Figure 1: Dynamic Learning Concept: a) Original image; b) Low-level segmentation; c) Initial Content Hierarchy; (d) Object 

Template;(e) Matching Result; (f) Content Hierarchy after Initial Learning; (g) New Object Template; (f) Matching Result to New

Template; (g) Content Hierarchy After Dynamic Learning  

                                                        (a)                        (b)                       (c)                (d)  

Figure 2: Noise Sensitivity of NASD:(a) Template (b) Input Image (b) Automatic Segmentation (c) Manual Segmentation 

                      (a)                     (b)                    (c)                       (d)                          (e)                         (f)                      (g)  

Figure 3: Experiments for Dynamic Learning: a) Original image; (b) Template 1;(c) Matching Result; (d) Content Hierarchy after 

Initial Learning; (e) Template 2; (f) Matching Result to New Template; (g) Content Hierarchy After Dynamic Learning (Note the 

changes in hierarchy for the first two “SUV” images while the last two remained unchanged)
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