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ABSTRACT

In this paper, the problem of two-dimensional (2-D) fre-
quency estimation of a complex sinusoid embedded in a
white Gaussian additive noise and a multiplicative noise is
addressed. For this purpose, we derive a non-causal Min-
imum Variance Representation, the coefficients of which
are described according to the frequencies to be estimated.
Therefore, estimates are given without a complete compu-
tation of the Power Spectral Density over the 2-D frequency
plane, but directly from the coefficients.

Accuracy and robustness of this new 2-D frequency esti-
mator are statistically assessed by Monte Carlo simulations.
The results obtained show that a good local frequency esti-
mation can be directly achieved with the proposed model,
even for signal embedded in multiplicative noise.

1. INTRODUCTION

Two-dimensional (2-D) frequency estimation has been widely
studied. Among its classical applications, we could men-
tion the use of spectral properties for image segmentation
or classification (e.g., [1]). In [2], authors proposed to de-
compose a texture into a sum of an indeterministic and a
deterministic field, which can be characterized by 2-D res-
onant frequencies. Two-dimensional frequency estimation
is also of interest in fields such as sonar and radar. This
problem can be achieved using 2-D Fourier transform based
methods. In [3], Kay and Nekovei described the use of the
Fourier transform as the optimal maximum likelihood esti-
mator for a single sinusoid in white Gaussian noise. Never-
theless, the use of this method requires a large data set and
the stationarity over it. Actually, when the number of data
available is small, those methods suffer from the resolution
limit called the Rayleigh limit. These assumptions, which
are very restrictive for real life images, reduce the use of
such methods, particularly in the presence of additive and

multiplicative noises. Therefore, short term frequency esti-
mators have to be developed. Among the main methods pro-
posed, we could mentioned 2-D autoregressive (AR) meth-
ods, 2-D maximum entropy methods or Minimum Variance
Representations (MVR’s) (e.g., [4], [5], [6]). These meth-
ods are commonly said to be of high resolution [7], [8] and
can give better estimates than classical methods, especially
when the number of data available is small.

The problem of 2-D frequency estimation is dealt with
in this work using non-causal MVR’s in presence of addi-
tive and multiplicative noises. The use of these methods
corresponds to a modelling of the data as the output signal
of an all-pole infinite impulse response (IIR) filter driven by
a 2-D Gaussian random process. The parameters of this fil-
ter can be determined with classical spectral analysis tech-
niques such as the Yule-Walker method. When the model
is well chosen and after a numerical evaluation of the pa-
rameters, the power spectral density (PSD) of the output
signal of the model is close to the true PSD of the exper-
imental signal. The poles of such a model, which corre-
spond to the roots of the transfer function denominator, are
used in this study to estimate the 2-D frequency. The main
problem in 2-D autoregressive modelling is that the roots
of 2-D polynomials are generally continuous contours in a
complex space, unlike isolated points for 1-D polynomials
[8]. Therefore, although MVR’s and autoregressive models
have already been used for 2-D applications such as texture
synthesis [9], or texture classification (e.g., [10]), no mea-
surement can be performed directly from the autoregressive
parameters, because poles are difficult to assess. For this
purpose, we present in this paper a particular model of 2-D
MVR’s that ensures that the roots are isolated points. Coef-
ficients of this model are directly estimated according to the
frequencies to be estimated.

The paper is organized as follows. In section 2, the
model of the complex signal with additive and multiplica-
tive noises is presented. The non-causalMVR and frequency
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estimates are given in section 3. Performances are statisti-
cally assessed by Monte Carlo simulations in section 4. Fi-
nally, in section 5, we present the main conclusions.

2. TWO-DIMENSIONAL COMPLEX SIGNAL
MODEL

In this work, we assume that observed process s(k, l) is
a complex sinusoid with varying amplitude embedded in
complex white Gaussian additive noise given by

s(k, l) = A(k, l) exp (j2π(f1k + f2l + θ)) + n(k, l), (1)

where :

• k ∈ [0..K − 1] and l ∈ [0..L − 1],

• f1 and f2 are the frequencies along the horizontal and
the vertical directions respectively,

• θ is the initial phase, uniformly distributed in [0..2π],

• n(k, l) is the zero-mean complex white gaussian ad-
ditive noise, with variance σ2

n. In this case, variances
of real and imaginary parts of n(k, l) are σ2

n/2.

• A(k, l) is a real low-pass random process. The vari-
ance of this process is denoted σ2

A.

• fA corresponds to the normalized cut-off frequency
of the varying amplitude A(k, l).

The signal to noise ratio (SNR) is defined here as SNR =
σ2

A/σ2
n. Figure 1 represents an example of the spectrum of

s(k, l) given by eq. (1), with f1 = f2 = 0.15, K = L = 32.

Fig. 1. Spectrum of a 32 × 32 2-D complex signal with
additive and multiplicative noises.

3. ALGORITHM

As already mentioned in introduction, we propose in this
work a new estimator for f1 and f2 based on the construc-
tion of a non-causal MVR. These methods consist in finding
the coefficient set {a(m, n)} that minimizes the variance of
the prediction error defined in the 2-D general case by

ε(k, l) = I(k, l) − Î(k, l), (2)

where Î(k, l), also called a (M, N)th-order minimum vari-
ance model for I(k, l) using the prediction support V , is
defined in [6] by

Î(k, l) =
∑

(m,n)∈V

a(m, n)I(k − m, l − n). (3)

In the general case, the support V of a noncausal model of
order (M, N) is

V = (m, n) :
{−M ≤ m ≤ M,−N ≤ n ≤ N, (m, n) �= (0, 0)}.

The associated orthogonality condition, E
[
Î(k, l)ε(k, l)

]
=

0, implies the normal equations [6] :

σ2
ε d(k, l) = φI(k, l) −

∑
(m,n)∈V

a(m, n)φI(k − m, l − n),

(4)
for all (k, l). σ2

ε represents the variance of the random pro-
cess ε(k, l), φI(k, l) is the autocorrelation of I(k, l), and
d(k, l) is the 2-D Kronecker delta function :

d(k, l) =
{

1 for k = l = 0,
0 everywhere else.

(5)

I(k, l) given by the linear time invariant equation (2) can
be written as the output signal of a 2-D infinite impulse re-
sponse (IIR) filter defined by the z-domain transfer function

H(z1, z2) =
1

1 − ∑
(m,n)∈V

am,nz−m
1 z−n

2

, (6)

where z−1
1 and z−1

2 are complex variables corresponding to
unit delays in the k and l directions respectively :

z−1
1 I(k, l) = I(k − 1, l)

z−1
2 I(k, l) = I(k, l − 1).

Finally, if the order of this model (i.e. M and N ) and the
coefficients are well estimated, the true PSD of the analyzed
image I(k, l) can be estimated using eq. (6) in noting that
z1,2 = exp(j2πfk,l). The presence of the denominator in
the transfer function makes the model resonant for a set of
frequencies, therefore IIR filters are generally used for esti-
mating resonant frequencies corresponding to peaks in the
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PSD, which is of our interest in this study. We are here inter-
ested in estimating frequencies f1 and f2 without evaluating
the whole 2-D frequency function.

The main drawback of the use of non-causal models
in 2-D is that, unlike in one-dimension, no factorization
method of the polynomial denominator exists, and poles are
not necessarily isolated points. Therefore, in our case, a nat-
ural relationship cannot be determined between the coeffi-
cients and resonant frequencies. In order to ensure the exis-
tence of poles and to estimate the peak frequencies without
searching the maximum of the entire spectrum calculated
from equation (6), we propose to use a model with an im-
posed and already factorized structure. The desired poles of
the transfer function, according to figure 1 are

{
z1 = r1

z2 = r2
(7)

where r1 = R1 exp(j2πf1) and r2 = R2 exp(j2πf2) are
two complex numbers. We finally propose a transfer func-
tion corresponding to a resonant function when z1 = r1

and z2 = r2. These conditions are expressed in terms of
distance in the following transfer function :

H(z1, z2) =
1∣∣(1 − r1z

−1
1 )

∣∣2 +
∣∣(1 − r2z

−1
2 )

∣∣2 . (8)

The development of eq. (8) gives the following formula
of the 2-D z-transform :

H(z1, z2) = 1/ [2 + R2
1 + R2

2 − R1 exp(+j2πf1)z−1
1

−R1 exp(−j2πf1)z1

−R2 exp(+j2πf2)z−1
2

−R2 exp(−j2πf2)z2].
(9)

We finally obtain a 2-D non-causal MVR model of the order
(1, 1). In figure 2, the spectrum of the proposed MVR is
represented for the following parameters :

• R1 = R2 = 0.95,

• f1 = 0.1 and f2 = 0.05.

Modulus R1 and R2 of the roots of the autoregressive
model represent the frequency response selectivity of the
filter defined by eq. (8), according to the frequencies fk

and fl respectively. In this work, there is no need to have
two different values, therefore, we fix R1 = R2 = R. This
yields a circular sharp response around frequencies (f1, f2),
which is more appropriate for accurate estimations in the
presence of multiplicative noise. Moreover, the use of a
transfer function defined in terms of distance on eq. (8) in-
volves the non-causal nature of the model, and allows quasi
isotropic shapes of the peak in the estimated PSD.

We are now interested in estimating the coefficients in
their particular expression given by eq. (9). To be more

Fig. 2. Frequency response of 2-D MVR with R1 = R2 =
0.9 and f1 = f2 = 0.15.

precise, the set of three parameters f1, f2 and R has to be
estimated. Moreover, this model ensure the existence of one
pole and therefore the direct calculation of the frequencies.

The normal equation (4) becomes for k = l = 0 :

σ2
ε = (2 + 2R2)φI(0, 0) − R exp(j2πf1)φI(−1, 0)

−R exp(−j2πf1)φI(1, 0)
−R exp(−j2πf2)φI(0,−1)
−R exp(−j2πf2)φI(0, 1).

(10)
The set of coefficients X = [R, f1, f2]T is finally obtained
by minimizing the prediction error variance from eq. (10) :

XOPT = argmin
X

|(2 + 2R2)φI(0, 0)

−R exp(+j2πf1)φI(−1, 0)
−R exp(−j2πf1)φI(1, 0)
−R exp(+j2πf2)φI(0,−1)
−R exp(−j2πf2)φI(0, 1)|,

(11)

with R ∈]0..1[ and f1,2 ∈ [−0.5..0.5].

4. PERFORMANCES

In order to study performances of this 2-D frequency esti-
mator, Monte Carlo simulations have been performed. Es-
timations given by our estimator have been compared with
the classical frequency estimator based on the use of the
Fourier transform estimated on 1024 × 1024 points, for the
following parameters :

• θ uniformly distributed in [0...2π],

• K = L = 32,

• f1 = f2 = 0.15,
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• fA = 0.03.

For this purpose, the modulus R of the MVR pole is set
constant to 0.9, allowing resonant frequency estimates. Pre-
liminary results show that the two methods are unbiased.
Moreover, when the additive noise is low (this value de-
pends on the PSD of the varying amplitude), the frequency
estimation variance for the Fourier-based method depends
only on the size of the analyzed image and the cut-off fre-
quency fA. Beyond this threshold, the variance of the pro-
posed algorithm (2.8 10−5) is much more lower than the
variance of the Fourier-based method (2.2 10−4), as shown
in figure 3.
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Fig. 3. Histogram plots of the frequency estimation for the
Fourier-based method (− ∗ −) and the proposed estimator
(− + −).

Histogram plots in figure 3 show that the presence of the
multiplicative noise increases the estimation variance of the
Fourier method. It should be noted that this variance has
to be linked not only to the varying amplitude bandwidth
but also to the PSD estimation variance of the image using
short windows. Our findings indicate that the proposed al-
gorithm gives better estimates because of the use of a single
frequency resonant MVR. Thus, this resonant frequency ap-
pears in the center of the estimated 2-D bandwidth.

5. CONCLUSION

This paper is concerned with the problem of 2-D frequency
estimation in presence of additive and multiplicative noises.
An original point of this work is the use of a non-causal
Minimum Variance Representation. In the 2-D high resolu-
tion AR-based methods, causal supports have been merely
used. This is due to the difficulty of estimating the param-
eters of the model in a maximum likelihood sense. In this
work, we propose a new model ensuring the existence of a

pole in the 2-D frequency plane, the coefficients of which
are analytically defined according to the pole parameters
and, in particular, according to the frequencies to be esti-
mated.

Performances of this algorithm have been studied for
synthetic images with additive and multiplicative noises. Re-
sults are then compared with those obtained with the clas-
sical frequency estimator based on the use of the Fourier
transform. Our findings reveal the satisfactory behavior of
the proposed model for signal embedded in multiplicative
noise.
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