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ABSTRACT

We present a new camera self-calibration algorithm that
uses a low-complexity multistage approach. We derive a
polynomial optimization function with respect to the
camera intrinsic parameters, based on the equal singular
value property of the essential matrix. In terms of the
stability analysis of the intrinsic parameters, we propose a
multistage procedure to refine the estimation. Experimental
results with both synthetic and real images show the
accuracy and robustness of our method.

1. INTRODUCTION

Camera self-calibration has attracted a great deal of
attention in the field of computer vision because of its role
in automatic 3D reconstruction. Unlike the classical
calibration problem, a self-calibration algorithm attempts
to find the camera intrinsic parameters from a set of images
without the ground truth.

Faugeras et al. [1] proposed a theory of self-calibration
expressed by the Kruppa’s equations and a numerical
method based on the Kruppa’s equations. Pollefeys and
Gool [2] proposed another self-calibration method using
the modulus constraints. Hartley [3] introduced a new self-
calibration method based on the equal singular value
(ESV) property of the essential matrix [4]. Mendonca and
Cipolla [5] extended Hartley’s method to the case of a
larger sequence of images. Roth and Whitehead [6]
provided a stochastic optimization approach to self-
calibration.

In this paper, we propose a new multistage self-
calibration algorithm based on the ESV property of the
essential matrix. Differing from previous approaches
[3][5][6], where the optimization function is not explicit
with respect to the camera intrinsic parameters, we derive a
polynomial optimization function of the intrinsic
parameters, and then follow a multistage procedure to
refine the results. We applied our method to both synthetic
and real images. The experimental results show the
accuracy and robustness of our approach when compared
with other leading approaches such as the ones proposed in
[6][7].

2. SELF-CALIBRATION BASED ON THE ESV
PROPERTY OF THE ESSENTIAL MATRIX

2.1 Background of Camera Self-calibration
The camera calibration matrix K , which consists of the

camera intrinsic parameters, has the following entries:
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where uα and vα are the focal lengths in pixels along

orthogonal axes, 0u and 0v represent the coordinates of

the principal point, and θ is the skew angle and often
considered to be 2π . The goal of self-calibration is to

estimate uα , vα , 0u and 0v .

The essential matrix E represents the epipolar
geometry if the camera calibration is already known. Based
on the assumption that the camera intrinsic parameters
remain unchanged throughout the whole set of images, E
is related to the fundamental matrix F [8][9] by

FKKE T= . (2)
It is proven in [4] that one of the singular values of E

is zero and the other two are equal to each other. The zero
singular value condition is automatically satisfied since F
is of rank 2 and K is of full rank, while the ESV property
establishes a link between the camera relative motion and
associated intrinsic parameters.

2.2. Polynomial Optimization Function Based on the
ESV Property

We show that the ESV constraint can be expressed as a
polynomial with respect to the entries of K . In terms of
the definition of singular value, the property of the singular
values of E corresponds to the property of the eigenvalues

of EET . Let FKKFKKEEA TTTT )(== , then the

characteristic equation 0)det( =A-Iλ can be expressed as
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where 0l , 1l and 2l are functions of the entries of A and

in turn functions of the entries of K and F . The three
eigenvalues 1λ , 2λ and 3λ of A should satisfy 21 λλ =
and 03 =λ . Substituting 03 =λ in Eq.(3) leads to an

order-reduced equation
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Furthermore, 21 λλ = leads to:

04 1
2
2 =− ll . (5)

Given F , and after some manipulation, we rewrite
Eq.(5) in a quartic polynomial explicitly with respect to

2
ux α= and 2

vy α= :

0)15,,1,,,( == �icyxf i , (6)

where 15,,1, �=ici is the coefficient of each item 4x ,
4y , yx3 , and so on, and is expressed as a function of 0u ,

0v and the entries of F .

Eq.(6) has two advantages. First, )15,,1,,,( �=icyxf i

is a bivariate polynomial with respect to 2
ux α= and

2
vy α= , based on the assumption that )( 0,0 vu is fixed.

This property enables the computation of exact derivatives,
which simplifies the optimization. Second, since the

coefficients of 4x and 4y are positive numbers, this

function monotonously increases as x and y approach

infinity. Therefore, the initialization is less critical than it is
in a usual optimization problem.

2.3. Weighted Global Optimization Function
From the perspective of numerical analysis, we may

achieve better performance if Eq.(6) is weighted. We use a
normalized version of Eq.(5) as follows:
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Comparing Eq.(7) with Eq.(5), we take 2
21 l as the weight.

In practice, we have a set of N images so that we can
obtain at most 2)1( −NN fundamental matrices. The

advantage of using all of the 2)1( −NN fundamental

matrices is twofold: first, the redundancy reinforces the
numerical robustness; second, it avoids bias towards any
given image. Hence we employ the following weighted
global optimization function
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where )15,,1,,,( �=jcyxf i
ji is the optimization function

of the i-th image pair, and the weight ii lw )1( 2
2= is a

function of x , y , 0u , 0v and the entries of iF .

3. MULTISTAGE APPROACH TO CAMERA SELF-
CALIBRATION

3.1. Stability Analysis of the Intrinsic Parameters
In practice, we do not directly minimize Eq.(8) with

respect to all of the four intrinsic parameters because it is
computationally extensive and unstable. In fact, these

parameters impact the final 3D reconstruction quite
differently. Zhang et al. [10] stated that shifting the
principal point from its true position does not cause large
distortion of the reconstructed 3D points, based on the
assumption that the values of uα and vα are correct. In the

case that none of the four parameters are known, the offset
of the principal point impacts the estimation of uα and vα .

However, experiments show that the estimated aspect
ratio ( uv αα ) remains close to its true value while

suffering from the offset of the principal point. In [5] it is
stated that the estimation of uv αα is very robust to noise.

This observation is extended here: the estimation of the
aspect ratio is robust to both the noise of the coordinates of
the image points and the noise caused by the incorrect
location of the principal point.

3.2. A Multistage Algorithm for Self-calibration
Based on the above observation, we formulate our

multistage algorithm of self-calibration as follows:

Step 1. Estimate uα and vα , assuming that )( 0,0 vu is

located at the center of the image. The outcomes are

denoted by )1(~
uα and )1(~

vα .

Step 2. Refine the estimation of uα , 0u and 0v , assuming
)1()1( ~~

uvuv αααα = . The outcomes are )2(~
uα , )2(

0
~u and )2(

0
~v .

Step 3. Refine the estimation of uα and vα , assuming

)~,~()( )2(
0

)2(
00,0 vuvu = . The outcomes are )3(~

uα and )3(~
vα .

Step 4. Refine uα , vα , 0u and 0v , with the initial

conditions )3(~
uα , )3(~

vα , )2(
0

~u and )2(
0

~v . The final outcomes

are uα~ , vα~ , 0
~u and 0

~v .

Step 1 and step 3 are accomplished by optimizing the
objective function expressed in Eq.(8). In step 2, we need
to estimate 0u and 0v . However, Eq. (8) is not a function

of 0u and 0v . Hence, instead of using Eq.(8), we use the

following optimization function [6], which directly
computes the singular values of E
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where i
1λ and i

2λ represent the nonzero singular values of

iE , in descending order. Eq.(9) is also used in step 4.

4. EXPERIMENTAL RESULTS

4.1. Experimental Results with Synthetic Data
In this experiment, 20 synthetic images ( 512512× )

were generated with 200 points randomly scattered in a
cube of edge size 800 centered at )2000,0,0( . The intrinsic

parameters are chosen as 8.957=uα , 2.891=vα and
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)241,279()( 0,0 =vu , to simulate the standard settings of a

real camera. We added (to the pixel locations) two types of
noise: uniformly distributed noise in [-0.5 pixel, 0.5 pixel],
which simulates the quantization error, and Gaussian noise
with standard deviation of 1 pixel, which simulates the
noise caused from point corresponding match.
Fundamental matrices were computed from various
numbers (4 to 20) of images using the normalized linear
criterion [9].

To evaluate the performance of our method, we
compared our algorithm with the one presented in [6],
which is equivalent to using only step 4 of our method.
This approach, referred to as the RW method, represents
an example of an ESV-based state-of-the-art algorithm.
Each estimation task based on a certain number of images
was repeated 100=N times. We measured the average

value of the relative error �
=

−=
N

i
iN 1

~1 αα
α

εα . Here

},{ vu ααα ∈ is the true value and },{~
,, iviui ααα ∈ is the

estimated value from the i-th round of experiment. Below,
we present only the results for uα . Similar results were

obtained for vα .

We also measured the average relative error resulted
from estimating the coordinate of the principal point:

�
=

−+−
+

=
N

i
iipp vvuu

vuN 1

2
0,0

2
0,02

0
2
0

)~()~(
1ε .

Here ),( 00 vu is the true coordinate of the principal point

and ),( ,0,0 ii vu is the estimated value from the i-th round of

experiment.
From the experimental results, we can make the

following conclusions:
• Our method outperformed the RW method for the

estimation of both uα and the principal point under the two

noise conditions. The initial values of uα and vα are set to

1000 and 1000 respectively in the RW method while they
are set to 2000 and 2000 respectively in our method.
Hence, although we have selected worse initial values, our
estimation results are still better than the results from the
RW method. This observation is consistent with the
statement in section 2.2 that our optimization method is
insensitive to the initialization.

• Our performance improvement over the RW method is
greater with respect to the estimation of uα than the

estimation of the principal point. This result is not
unsatisfactory because as mentioned in section 3.1, the
scaling factors uα and vα have more impact on the 3D

reconstruction than the principal point does.
• The number of used images influences the estimation.

Generally speaking, using more images may improve the

estimation. In the case of real images, we may select well-
estimated fundamental matrices for the self-calibration.
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Figure 1. The comparison of the average relative error for uα
when the uniformly distributed noise [-0.5 pixel, 0.5 pixel] is
added to the pixel coordinates. Our method: the solid line with
triangle mark; RW method: the dotted line with cross mark.
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Figure 2. The comparison of the average relative error for uα
when the Gaussian noise with standard deviations of 1 pixel is
added to the pixel coordinates. Our method: the solid line with
triangle mark; RW method: the dotted line with cross mark.
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Figure 3. The comparison of the average relative error for the
principal point when the uniformly distributed noise [-0.5 pixel,
0.5 pixel] is added to the pixel coordinates. Our method: the solid
line with triangle mark; RW method: the dotted line with cross
mark.
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Figure 4. The comparison of the average relative error for the
principal point when the Gaussian noise with standard deviation
of 1 pixel is added to the pixel coordinates. Our method: the solid
line with triangle mark; RW method: the dotted line with cross
mark.

4.2. Experimental Results with Real Data
In this section, we show the results of self-calibration for

a set of images named “Valbonne Church” of size
512768× . We downloaded these images from the INRIA

ftp site.
We selected six images of this set for our experiment.

The point correspondences were picked up manually. We
computed all of the fifteen fundamental matrices and then
selected “well-estimated” fundamental matrices in terms of
the error of epipolar distance [8]. In Table 1, we compare
our results with those stated in [6][7].

Table 1: Estimation results of our method and other
methods on real images

uα vα ( 0,0 vu )

Kruppa 679.285 681.345 (383.188, 258.802)
RW 605.5 ⎯ ⎯
Prog 658.5 661.6 (406, 238)

In Table 1, the first row labeled “Kruppa” represents the
estimation from [7], which is regarded as a precise
estimation. The second row labeled “RW” represents the
results from [6]. This method estimated only the focal
length. The last row labeled “Prog” shows our results.
Compared with the results of the RW method, our
estimated uα and vα are much closer to those obtained by

the Kruppa method. But our estimation of the principal
point is different from that by Kruppa method. The above
estimation results illustrate that our proposed approach
does, at minimum, provide a very close performance to
other well-established approaches for self-calibration.
More importantly, the proposed method provides new
advantages such as stability and simplicity due to the
polynomial form of our optimization function.

5. CONCLUSIONS AND SUMMARY

In this paper, we proposed a multistage camera self-
calibration algorithm based on the ESV property of the
essential matrix. Unlike previous ESV-based approaches
[3][5][6], we derived a polynomial optimization function,
which is an explicit expression of the unknown intrinsic
parameters. This makes the optimization simple and
insensitive to the initialization.

We also performed a stability analysis of the intrinsic
parameters and then proposed a multistage procedure to
refine the self-calibration. We compared our method with
the one presented in [6] on synthetic image data. The
statistical results show that our method performed better
than the method in [6]. We also compared our estimation
results with the results from [6] and [7] on real image data.
In this case, we obtained, at minimum, comparable
performance to these well-established methods.
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