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ABSTRACT

Analysis of spatial patterns in images can provide 

valuable information in many application domains, such 

as in geography, meteorology and medicine. We propose 

to apply techniques from the time series domain to 

analyze the spatial patterns extracted from 3D images. 

After traversing an image using a space-filling curve we 

discover discriminative patterns by analyzing the spatial 

sequence in the transformed domain. Because of the 

similarity of the sequences with time series we propose 

the use of existing time series similarity analysis 

techniques, including Euclidean distance and 

dimensionality reduction techniques such as Singular 

Value Decomposition and Piecewise Aggregate 

Approximation, for further analysis of the spatial patterns. 

As a case study, we analyze an fMRI dataset. 

Experimental results verify that the discovered spatial 

patterns have strong discriminative power among different 

classes and the overall accuracy for clustering and 

similarity retrieval is above 90% and as high as 100% for 

certain experimental settings. 

1. INTRODUCTION 

Spatial patterns play a crucial role in a wide range of 

scientific and engineering problems where data often 

comes as images. For human brain images, several 

approaches have been used to detect discriminative 

patterns [1], but there is usually lack of methods to 

automatically classify such patterns and quantitatively 

measure levels of their similarity.  

Kontos et al [2] proposed a new technique to detect 

and analyze discriminative patterns in 3D images. This 

technique is based on an initial linear mapping of the 

multidimensional space using the Hilbert space-filling 

curve [3]. This space-filling curve has been proved 

optimal in preserving the locality and clustering properties 

of data after the domain transformation [4]. Statistical 

tests of significance are then applied to groups of points 

(that correspond to voxels) in the transformed domain to 

detect discriminative patterns. Grouping the points as part 

of a binning process reduces the multiple comparison 

problem observed in voxel-based analysis techniques [5]. 

The significance of the discriminative patterns extracted 

by this new technique has been shown through 

classification experiments using neural networks.  

However, considering the high dimensionality of the 

discovered patterns, it is still difficult to do further 

analysis such as clustering, classification and similarity 

searches. Noticing that the voxel values of discriminative 

patterns in 1D are arranged in a certain spatial order and 

can actually be viewed as a time series (or sequence), we 

propose to apply existing analysis techniques already 

available in the time series domain. This idea is also 

motivated by the fact that there is an enormous wealth of 

time series analysis methods and associated 

dimensionality reduction techniques that can help 

overcome the difficulties mentioned above. 

In the time series domain, the dimensionality 

reduction has been considered as one of the most 

important issues since spatial access methods perform 

well only when the number of dimensions is low 

(typically below 15). The solution to extract a signature 

from each sequence and to index the signature space was 

originally proposed by Faloutsos et al [6]. To guarantee 

completeness (i.e., no false dismissals) the admissibility 

criterion that the distance function used in the signature 

space must underestimate the true distance measure 

(bounding lemma) was also proposed [6].  Generally 

speaking, there are two groups of techniques to reduce the 

dimensionality of time series:  those based on global 

information, such as Singular Value Decomposition 

(SVD) [7]; and those based on local information, such as 

Discrete Fourier Transform (DFT) [8] and Piecewise 

Aggregate Approximation (PAA) [7]. A survey of recent 

methods can be found in [9].  

Here as a case study, we analyze a functional MRI1

dataset obtained from a study of Alzheimer’s disease. We 

apply several time series analysis techniques to the 

discriminative fMRI activation patterns detected using 

space-filling curves and statistical tests. 

2. METHODOLOGY

1  Functional-Magnetic Resonance Imaging: shows 

physiological activity in brain 
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As proposed in [2], we extract discriminative fMRI

activation patterns by traversing the 3D space of fMRI 

images using the Hilbert space-filling curve and applying

a statistical test of significance on groups of voxels

(points) in the transformed linear domain.  Since Hilbert

space-filling curve preserves the locality in the original

space, the neighboring voxels in the 3D space are also 

close to each other in the linear domain. Figure 1 shows

an example  of  the  mapping.  After  the  mapping,  we 

apply

(a)   (b) 
Figure 1. (a) A 2D slice of a 3D fMRI map, and (b) its traversal 

using the Hilbert space-filling curve. 

statistical analysis (t-test) in the linear domain. In order to

reduce the computational complexity and the effect of the 

multiple comparison problem, we employ an intermediate

step of binning: K neighboring voxels are grouped 

together and their mean value is taken as the 

representative attribute. The voxel activation of a specific

bin is considered to differ class-wise substantially when

the statistical significance of the divergence is above a

certain predefined threshold .

Here, we propose to concatenate the values of voxels

in all the significant bins in the traversal order of the

filling curve and obtain a spatial sequence which contains

discriminative information about the original 3D volume.

Except for the spatial characteristic, this sequence is very

similar to a time series. A time series is a sequence

(ordered collection) of real values, X = x1, x2,…, xn,

where n can be very large. 

After mapping the discriminative patterns of a 3D 

volume to a time series, we can further analyze the

patterns using time series analysis techniques. Since

similarity calculation is the foundation of any further

investigation in time series domain, we need to define a 

distance function.

The most popular distance metric is the Euclidean

distance: for a target series X and a query series Q, both

of length n, the Euclidean distance is defined as: 

2

1

)(Q)D(X, i

n

i
i xq

Obviously, the simplest way of calculating the similarity

(or distance) between time series is the plain Euclidean 

method, which computes the Euclidean distance directly,

i.e., on the original series. For a small dataset this can be

very useful, though, for large data sets the efficiency may

become a problem. Since the time complexity is O(N*n),

where n is the number of features that need to be 

represented for each time series and N is the number of 

time series in the dataset.

        In order to compute the similarity and index

efficiently while keeping the accuracy not significantly 

affected, many techniques of dimensionality reduction

have been suggested, such as DFT [8], SVD, PAA [7],

etc. The main idea of most of these techniques is to

extract only a few representative coefficients for

representing the original time sequences through a certain

transformation; in most cases, the coefficients that 

preserve most of the energy of the original sequences are

used. In the time series domain, an ideal transformation

should guarantee no false dismissals i.e., the distance

between a pair of time series should not be enlarged after

the transformation. This requirement can be written as: 

D(F(X), F(Q))  D(X, Q) 

where F(X), F(Q) are the representations of time series X 

and Q after the transformation.

Discrete Fourier Transform (DFT) and Discrete 

Wavelet Transform (DWT) have been shown very useful

in digital image processing, and they also have been

utilized in time series analysis [10]. These two transforms

are very similar and the difference between them is that

DFT maps a one dimensional time domain discrete

function into a representation in frequency domain while

the wavelet transform maps it into a representation that

allows localization in both time and frequency domains.

Two other popular techniques for the dimensionality

reduction are Piecewise Aggregate Approximation and 

Singular Vector Decomposition. The basic idea of 

Piecewise Aggregate Approximation (PAA) is 

straightforward: Given a time series  X = x1, x2,…, xn, we 

segment it into k (k<<n) equi-length parts. By recording

the mean value of each part, we get a new sequence Y = 

{y1, y2,…,yk}, whose dimensionality (k) is much lower

than that of the original time series. There are several 

variations of this method, such as the Adaptive Piecewise 

Constant Approximation (APCA) [11], which can treat

parts with different lengths.

While PAA is a technique based on local information

(single time series), Singular Vector Decomposition

(SVD) is based on the global information of the whole

dataset: The entire dataset is examined and rotated in such

a way that the first axes has the maximum possible 

variance, the second axes has the second maximum

possible variance orthogonal to the first, the third axes has

the third maximum possible variance orthogonal to the

first two, etc. Since most variance information is recorded 

in the first several (k) dimensions after the transformation,

it is possible to keep only the first k values of a 

transformed time series without losing much information.

In the following section, we present the experimental

results of a case study using both the plain Euclidean

method and dimensionality reduction techniques.
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3. RESULTS

3.1. Data preparation

The original dataset consists of 3D activation maps of 9 

controls and 9 Alzheimer’s disease patients on a category-

exemplar word pair. After certain spatial normalization,

we map each 3D map into 1D using Hilbert space-filling 

curve. The t-test is then employed for detecting

discriminative voxels. To test the effect of the threshold,

we take two different values for : 0.05 and 0.01.  With

=0.05, we get a time series of length 10,000 for each 

subject and with =0.01 we get a time series of length

1,500. Finally, we create two datasets: TS01 ( =0.01)

with 18 time series each of length 1,500 and TS05 

( =0.05) with 18 time series each of length 10,000.

To avoid the potential effects of scaling and shifting

in analysis, before we actually perform any experiment,

the datasets are preprocessed using Z normalization. That

is, each time series X is normalized as:

)(/)( XXXX  where X is the mean value of X and 

(X) is its standard deviation. Figure 2 shows an example

from each dataset. 

(a)     (b) 
Figure 2.  Examples of time series: (a) from TS01,  (b) from TS05.

3.2. Time Series Analysis

In order to evaluate the discriminative power of the

extracted patterns, we first apply the plain Euclidean

method which uses the Euclidean distance on the original

(full-length) time series. Due to the high dimensionality

(1,500 and 10,000), the plain Euclidean method is

computationally expensive. In order to improve the

computational efficiency, we utilize the following

dimensionality reduction techniques introduced in the 

previous section: DFT, DWT, SVD and PAA. Based on

the distance (dissimilarity) calculated with these different

methods, we perform experiments on clustering and

nearest-neighbor retrieval. To make the results more

robust, for dimensionality reduction, we keep two 

different dimensionalities after reduction: 5 and 10. (The

dimensionality is doubled for DWT).

3.2.1 Clustering experiments

For time series clustering, the PAM (partitioning around 

medoids) algorithm was used on both datasets, with time

series distance calculated based on different methods.

At the same time, in order to evaluate the accuracy 

and quality of clustering, the following cluster similarity

metric was used: Given two clusterings G=G1,G2,…,GK

(the groundtruth), and A = A1,A2,…Ak (clustering result

by a certain clustering method), the clustering accuracy is 

evaluated with the cluster similarity defined as: 

kAGSim
i ji /)),(max(A)Sim(G, j

where |)A||G|( / |)AG|2()A,Sim(G jijiji
.

Obviously, the value ranges between 0 and 1, with 1

standing for a perfect clustering result. More details about

this metric can be found in [12].

Table 1 displays the actual experimental results. Due 

to the stochastic nature of PAM algorithm, each value in

the table is actually the mean of 10 experimental runs. 

Table 1 Clustering results
Data Dim DFT DWT PAA SVD Plain

Euclidean

5 0.89 0.76 0.92 0.91TS01

10 0.93 0.95 0.93 0.91

0.92

5 0.93 0.67 0.94 0.94TS05

10 0.98 0.67 0.94 0.97

0.99

The results in the table clearly demonstrate the strong

discriminative strength of the time series. The plain

Euclidean achieves the best result since it takes into

account all the details about the patterns. Observe though

that with the dimensionality reduction techniques of time

series, even after the dimensionality is reduced to as low

as 5 or 10, the accuracy can remain above 90%. The 

relatively poor performance of DWT on TS05 is probably

caused by the insufficiency of coefficients. 

Here, we compare the proposed method with a static

partitioning approach where each dimension is spilt into l
equal-length bins, and we get a l*l*l hyper-rectangle for 

each 3D image. The mean values of the sub-regions are

used as representative attributes. Using the Euclidean as 

the distance measure, we performed clustering 

experiments. As shown in Table 2, even with a

dimensionality of 64 (when l=4), the resulting accuracy 

(0.61) is much worse than that of the proposed method.

Table 2 Clustering results for static partitioning method

l Dim Clustering Accuracy

2 8 0.56

3 27 0.58

4 64 0.61

3.2.2 K Nearest-neighbor (KNN) retrieval experiments 
K nearest-neighbor retrieval is another important

application: given a query subject, the k most similar

subjects are to be retrieved. The more subjects within the

same class as the query are found, the better the retrieval

results. Precision and recall are a pair of metrics used to 
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evaluate the effectiveness of the retrieval: precision is the

number of subjects with the same class label divided by k,

and recall is the number of subjects with the same class

label divided by the total number of subjects in the same

class. It is desirable that the precision stays at a high level

when the recall ratio increases from 0 to 1. 

To get a stable result, we applied 9-fold cross

validation in our experiments:  each time one control and 

one patient are taken as a query and their k nearest 

neighbors are retrieved. The averaged precision and recall 

ratios are reported in Figure 3 for the two time series 

datasets.

Figure 3. k nearest-neighbor retrieval results on

(a) Dataset TS01  (b) Dataset TS05 

For the plain Euclidean method, the accuracy of 

retrieval is nearly always perfect, with 100% precision.

Even after the dimensionality is reduced to as low as  10,

we can still achieve very good precision (between 80-

100%) with the exception of DWT on TS05. Again, all

these results demonstrate the discriminative significance 

of the patterns we extracted using the Hilbert space-filling

curve.

4. Conclusions

The main contribution of this paper is the application of 

techniques from the time series domain to data mining and 

analysis of spatial patterns in 3D images. By mapping the

3D space to 1D with the traversal of the Hilbert space-

filling curve and applying statistical tests of significance

in the linear domain, we can detect discriminative

patterns, which can be represented as time series. We

propose the employment of analysis methods in the time

series domain to examine similarities among the original 

3D images. As a case study, we analyzed an fMRI dataset.

Based on similarity measures in time series, we performed

further applications, such as clustering and nearest-

neighbor retrieval resulting in high efficiency and 

accuracy.
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