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ABSTRACT

This paper presents a novel segmentation technique to extract prostate
contours from Transrectal Ultrasound (TRUS) images. A Sticks
Filter is first used to reduce the speckle and enhance the image
contrast. The problem is then discretized by projecting equispaced
radii from an arbitrary seed point inside the prostate cavity towards
its boundary. The distance of the prostate boundary from the seed
point is modeled by the trajectory of a moving object. The mo-
tion of this moving object is assumed to be governed by a finite
set of dynamical models subject to uncertainty. Candidate edge
points obtained along each radius include the measurement of the
object position and some false returns. This modeling approach
enables us to employ the interacting multiple model (IMM) esti-
mator along with a probabilistic data association filter (PDAF) for
prostate contour extraction. Since the method does not employ
any numerical optimization, convergence is very fast. The robust-
ness and accuracy of the method is demonstrated by segmenting
contours from a series of prostate ultrasound images.

1. INTRODUCTION

Prostate cancer is the most commonly diagnosed cancer in North
America and is the second-leading cause of cancer deaths in el-
derly men with approximately 33,000 deaths per year [1, 2]. One
of the most common imaging modalities that is used to visual-
ize prostate for the purpose of diagnosis and biopsy is TRUS. Al-
though currently, boundary of prostate images are mainly manu-
ally outlined on TRUS images by experienced radiologists, how-
ever due to poor contrast of these images, missing boundary seg-
mentations, shadows and echo dropouts, the segmentation results
are very subjective and vary between different radiologists. There-
fore, a segmentation method that could accurately demonstrate the
contours of prostate would be of significant importance for many
clinical applications [3].

Several prostate segmentation algorithms for ultrasound im-
ages have already been proposed in the literature. The method
proposed in [3] uses an anisotropic diffusion filter and patient-
specific anatomical information to help an expert radiologist to
manually segment the images. An algorithm based on quadratic
wavelet spline and an active contour model that evolves across
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edge maps at different resolutions of wavelet transform to con-
verge to the prostate contour is proposed in [4]. Another approach
uses model-based initialization and a discrete dynamic contour [5].
The algorithm requires the user select points on the prostate con-
tour with which an estimate of the prostate shape is interpolated
using cubic functions. The algorithm was further extended to seg-
ment 3D prostate volumes [6]. A 3D deformable surface is also
used in [7] and is demonstrated to be successful in segmenting 3D
ultrasound prostate images. Other proposed approaches use Gabor
filter texture segmentation [2] and morphological operators [8].

A statistical shape model is reported for automatic prostate
segmentation [1]. The algorithm uses a Gabor filter bank in mul-
tiple scales and orientations to characterize prostate boundary in
TRUS. The proposed method then uses a deformable model that
converges to prostate boundary in a coarse to fine approach.

Most of the developed techniques use deformable model con-
cepts in segmenting prostate images. Except [1], which employs
an automatic initialization technique, all the other methods use hu-
man intervention to get a close guess to the actual boundary for the
initialization of the deformable model. In addition, since there is
an optimization stage involved, these techniques are usually slow
and susceptible to local minimums, very commonly caused by
speckle and shadowing effects in ultrasound images. Furthermore,
most of the techniques in the literature compromise the processing
time for image segmentation in order to achieve a better accuracy
in the segmentation results.

We propose a new algorithm for ultrasound image segmenta-
tion for which no numerical optimization technique is employed.
The method uses the concept of combining multiple trajectory
models in order to track a single target in a randomly distributed
cluttered environment [9, 10]. In the previous original work by the
authors [11], a PDAF technique was used to extract carotid artery
contours from a sequence of ultrasound images in real-time. In
the current work, we combine the PDAF technique with the IMM
estimator in order to increase the accuracy of the extracted con-
tours. This combination has been necessary, since in contrast to
the carotid artery that has a well-defined circular shape, prostate
boundary can have almost any arbitrary shape and come in differ-
ent sizes. Because of the low computational cost of the algorithm,
it has a great potential to be implemented for real-time applica-
tions.

The rest of the paper is organized as follows. Section 2 briefly
explains the pre-processing stage for prostate images. Section
3 describes the new IMM/PDAF-based contour extraction tech-
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nique. Section 4 presents the experimental results. Section 5 dis-
cusses the limitations of the algorithm and possible solutions to
overcome those. Section 6 concludes the paper with a discussion
of the results and future improvements to the algorithm.

2. PREPROCESSING

Due to speckle and artifacts caused by e.g., pubic arch, occlusion
of part of prostate due to bowel gas and shadowing effects due to
calcification in the prostate [3], prostate contours in ultrasound im-
ages are not very clear which makes them very challenging to seg-
ment, both for naked human eye as well as any automatic segmen-
tation algorithm. Sticks filter [3, 8] is a very powerful tool to en-
hance the boundaries in ultrasound images. This filter takes advan-
tage of the fact that speckle in ultrasound images is decorrelated
at large distances. The algorithm considers a small square of size
N �N around each pixel in the image. It then finds the line with
length N that passes through the central pixel of the square and has
the maximum gray-level summation. The algorithm assigns this
summation to the central pixel of the square and continues to the
next pixel until all the pixels in the image are filtered. Figure 1
shows the implementation results with N=15 for a prostate ultra-
sound image. Note the significant boundary enhancement in the
filtered image. We use sticks filter as the pre-processing step for
our algorithm.

Fig. 1. The result of applying sticks filter on a prostate image; (a)
original image (b) filtered image.

3. THE IMM/PDAF ALGORITHM

This section briefly presents a novel image segmentation algorithm
to extract prostate boundary from medical images based on the
IMM-PDAF state estimator [10]. In this approach, it is assumed
that the boundary of the cavity is the trajectory of an object whose
motion is governed by a model from a finite set of known mod-
els at any given radii. These models can differ in their uncertainty
levels and/or their structures. The switching between the models
occur according to a set of Markov transition probabilities. The
observations are candidate edge points obtained by applying an
edge detection algorithm to the pre-filtered image along each ra-
dius (see Figure 2). In this research, the following set of approxi-
mately constant velocity dynamic models have been employed to

Fig. 2. A schematic diagram of the border extraction method; no-
tations are described in the text.

describe prostate boundary:
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are the radius of the prostate boundary from a seed point inside
the prostate and its derivative with respect to angle �, respectively,
�� is the sampling angle of the prostate boundary from the seed
point, Vj�k� is the process noise vector with covariance Qj�k� ��
���
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���
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�
��vj , Zj�k� is the output of the model, and �j�k�

is its error with covariance Rj�k�. It is assumed that the acceler-
ation (i.e. the second derivative of the radius with respect to the
angle) can be modeled by zero-mean, white, Gaussian noise, and
that the model output is a noisy version of the actual position of the
prostate boundary given that model j is in effect. Each trajectory
model is associated with a Kalman filter and the output of these
filters are combined in the recursive IMM/PDAF algorithm [10] to
estimate the location of the prostate boundary. Note that although
the use of constant velocity models has been found sufficient for
prostate contour segmentation however, one can use other dynamic
models depending on the application. Note also that unlike stan-
dard estimation problems, there are more than one measurement
of which only one is assumed to be due to the boundary of the cav-
ity. Therefore, the measurement, Z�k� is defined as (see [9] for
details)

Z�k� �

NcX
i��

ri�k��i (3)

The �i’s are weighting factors determined by the likelihood of
each candidate edge point i on radius k belonging to the boundary.
The �i’s can be computed by assuming that the actual boundary
point has a normal distribution with mean �d�kjk���, the predicted
radius at iteration k. The edge magnitudes are also incorporated in
the calculation of the �i’s such that edges with larger magnitudes
would receive a higher weight. Thus, the following formulation is
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used to compute the �i’s:

�i�k� �
pi�k�P
i
pi�k�

(4)

where

pi�k� �
Fedge�ri�k�� �k�

�p
��S�k�

exp

�
�
�ri�k�� �d�kjk � ����

�S�k�

�

(5)

Here, ri�k� is the distance of the ith candidate edge point along ra-
dius k from the seed point with i � �� �� � � � � Nc, and Fedge�ri�k�� �k�
is the magnitude of the edge at point (ri�k�� �k) in polar coordi-
nates (see Figure 2). Furthermore, S�k� is the boundary location
prediction covariance.

The use of multiple models in the proposed contour extrac-
tion algorithm will allow for the automatic adjustment of the filter
gain based on the boundary curvature. This is a significant advan-
tage over single-model PDAF which has to compromise between
the ability to extract sharp corners, smoothness and sensitivity to
noise.

4. EXPERIMENTAL RESULTS

To validate the accuracy and robustness of the proposed algorithm,
we tested the method on a series of prostate ultrasound images.
The resolution of the images are ������� and they are quantized
to 256 gray-levels. The current implementation uses two models
with R�k� � �� for both of the models and ��v��� � ��� and
��v��� � ��� for models one and two, respectively. The number
of angularly equispaced radii from a seed point inside each cavity
is 512. In the current implementation, the seed points are selected
manually by using a mouse pointer. Using MATLABTM , it takes
less than 1 s to run the IMM/PDAF algorithm for each image on a
2.4 GHz Pentium 4. For 10 candidate edge points and a maximum
radius of 100 pixels for the cavity, the computational complexity
of the IMM/PDAF algorithm is in the order of 385 kflops. Fig-
ures 3 to 5 show the segmentation results. The algorithm shows an
excellent performance in extracting contours of prostate images,
even under the existence of shadows and echo dropouts.

Fig. 3. Segmentation of images 1 and 2.

5. DISCUSSION

In order to evaluate the accuracy of the proposed segmentation al-
gorithm, we asked two expert radiologists to manually segment

Fig. 4. Segmentation of images 3 and 4.

Fig. 5. Segmentation of images 5 and 6.

Fig. 6. Comparison of automatic segmentation in Figure 3(a) with:
a) Expert’s manual segmentation 1; b) Snakes algorithm result.

(a) (b)

Fig. 7. a) Mode probabilities for the two models used in segment-
ing Figure 3(a); b) Segmentation of Figure 3(a) using two models
with a seed point with coordinates of yseed� � yseed��� (pixels).
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prostate images. The result for one of the images is demonstrated
in Figure 6(a). A quantitative comparison measure that is fre-
quently used in the literature to compare manual and automatic
segmentation techniques is the overlapping area of the two tech-
niques. In our 6 sample images, the average overlapping area is
98%. This is comparable to the results previously reported in the
literature [1]. Figure 6(b) shows the implementation of the Snakes
algorithm on one of the prostate images. As it was mentioned be-
fore, the Snakes algorithm is subject to local minimum in the op-
timization technique as well as close manual initialization of the
contour to achieve acceptable results.

In order to provide a better understanding of the way the algo-
rithm works, Figure 7(a) shows the mode probabilities of the two
models used in segmenting Figure 3(a) in each iteration. The figure
shows that depending on the rate of change in the contour radius
with respect to the seed point, the algorithm uses different predic-
tion models at every iteration to filter and segment the boundary
points.

The IMM/PDAF algorithm demonstrates excellent segmenta-
tion results for different size and shape of prostate in ultrasound
images. However, the algorithm has its own limitations in its cur-
rent form. The main limitation is that there should be a point inside
the cavity that can see all the cavity boundary points. Although
this condition holds for the majority of prostate images, however
it also limits the applications of this method in segmenting more
complicated shapes that happen in practice. In addition, one might
question the sensitivity of the extracted contour to the location of
the seed point. Figure 7(b) demonstrates this by shifting the seed
point used in Figure 3(a) by 5 pixels in y direction. It is clear that
even with this small shift, there is a slight change in the shape of
the contour. This is due to the fact that the candidate edge points
are detected along one dimensional radii from the seed point and
the orientations of these radii change with respect to the actual
edge locations when the seed point is displaced. Further research
is currently underway to reduce the sensitivity of the algorithm
with respect to the position of the seed point.

6. CONCLUSION

This paper presented a novel image segmentation algorithm that
uses an interactive multi-model probabilistic data association fil-
ter to successfully segment prostate contours from ultrasound im-
ages. The application of the algorithm has been demonstrated for
different prostate ultrasound images. While maintaining excellent
accuracy in extracting details of cavity contours, the filter also pro-
duces smooth segmentation results. Since the algorithm does not
use any numerical optimization technique, it can be implemented
very efficiently and has little computational cost. The next stage
of this research will include the development of a fully-automatic
algorithm to select seed points inside the prostate cavity instead
of operator interventions. Also, the algorithm will be modified to
segment non-convex shape cavities.
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