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ABSTRACT

The main contribution of this communication is the
derivation of a generalized form of the Geman & Yang con-
struction for minimization of convex, non-quadratic criteria.
The generalization provides means of obtaining a normal
matrix with predefined structure. We show that this property
can be used to improve the numerical efficiency of edge pre-
serving MRI reconstruction. The improvement is assessed
experimentally using synthetic data. In order to illustrate
the practicality of the method, an example of large size, 3D
real data processing is also provided.

1. INTRODUCTION AND PROBLEM STATEMENT

The starting point of this work is the problem of image re-
construction in magnetic resonance imaging (MRI). In order
to improve the performance of standard image reconstruc-
tion techniques, an inverse problem approach is adopted in
which the data formation process is modeled by the follow-
ing relation:

y = Φ2x + n (1)

where y and x respectively denote the vector of complex
data measured in the k-space, and the set of pixels of the
unknown image rearranged in vector form through, e.g., a
raster scan. Φ2 represents the 2D discrete Fourier transform
matrix and n is a noise vector that accounts for unmodeled
phenomena. The reconstructed image is defined as x̂ =
arg minx J(x) with:

J(x) = J0(x) + F (x) (2)

where J0(x) = ‖y − Φ2x‖2 is a least-squares criterion
which accounts for the fidelity of the solution to the mea-
sured data, and where penalty term F (x) expresses prior
information about the solution.

Here, we assume F (x) to be an edge-preserving func-
tion of the form:

F (x) =
2∑

l=1

λl

∑
c∈Cl

ϕ(dT
c x) (3)

where ·T denotes the transconjugation operation, where C1

(resp. C2) represents the set of horizontal (resp. vertical) ad-
jacent pixel pairs called cliques and where each vector dc

has a support region restricted to clique c. In order for F
to be edge-preserving while yielding a convex criterion J ,
function ϕ(·) is assumed to be strictly convex, coercive with
quadratic behavior near 0 and linear behavior toward infin-
ity [1]. Several functions meet these criteria and here ϕ(·)
is defined as:

ϕ(u) =
√

δ2 + |u|2 (4)

where δ is a scaling factor that determines the transition be-
tween the quadratic and linear regions.

As reported in [2, 3], criterion J(x) can be minimized
in a very efficient manner using Geman & Yang (GY)-type
algorithms. Derivation of these procedures is based upon
the introduction of the following pair of auxiliary functions:

Glα(u) = uT u
2 − α

∑
c∈Cl

ϕ(uc)
G∗

lα(b) = bT b
2 + ψlα(b)

(5)

Assume that α is chosen such that Glα(·) is convex; this
condition is met when α < supu{ϕ′′(u)}−1 [4, 5]. For our
choice of ϕ, Glα is convex when α ∈]0, δ[. Then Glα and
G∗

lα form a pair of convex conjugate functions [6] provided
that ψlα be defined as:

ψlα(b) = sup
u

{
α

∑
c∈Cl

ϕ(uc) − (u − b)T (u − b)
2

}
(6)

It follows from the convex duality relationships that the
minimizer of criterion J can be found by global minimiza-
tion of augmented criterion Kα(x, b) with respect to x and
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b, Kα being defined as:

Kα(x, b) = J0(x)+
2∑

l=1

λl
(ul − bl)T (ul − bl)

2α
+

1
α

ψlα(bl)

with ul = Dlx ; Dl = [dT
1 | . . . |dT

Ml
] and Ml = |Cl| ; l ∈

{1, 2} (D1 and D2 represent the first difference operators in
the horizontal and vertical directions, respectively). In addi-
tion, the global minimum of Kα can be reached by iterative
block-minimization of Kα with respect to x and b, alterna-
tively. This is particularly interesting because each partial
minimization operation is simple. Since Kα is quadratic
with respect to x, the minimizer can be obtained in closed-
form and takes the expression:

x̂ = A−1

(
Φ−1

2 y +
2∑

l=1

λl

2αNcNl
DT

l bl

)
(7)

with A = I +
2∑

l=1

λl

2αNcNl
DT

l Dl (8)

where images are assumed to be of size Nc × Nl. Mini-
mization of Kα with respect to b follows from the convex
duality relationships and the solution can also be expressed
in closed-form as:

b̂l = ul − α
ul√

δ2 + |ul|2
l ∈ {1, 2} (9)

where the ratio in the right hand side of (9) should be under-
stood as a componentwise operation, and where the above
expression is valid for real or complex variables x and b1.

One of the main advantages of the GY procedure lies in
the fact that normal matrix A remains constant along the it-
erations and therefore needs to be inverted only once. How-
ever, for medical images of realistic sizes, the one-time in-
version of A and the matrix multiplication in (7) at each
iteration still represent a significant computational burden.
We now turn to the derivation of formulations of the GY
construction which provide means for faster implementa-
tion of these algorithms.

2. NEW FORMS OF THE GY CONSTRUCTION

2.1. GY standard formulation and application to MRI

The expression given in (8) shows that normal matrix A is
Hermitian with size (NcNl × NcNl). It should be noticed
that the terms DT

l Dl are quasi block-circulant. Therefore,
the whole matrix A is quasi block-circulant and can be ex-
pressed as:

A = C − ∆

1This result can be derived by considering complex variables as 2-
component vectors.

where C is block-circulant and ∆ is a low-rank perturbation
matrix. Due to the Hermitian symmetry of A, ∆ can be
further factored as:

∆ = UUT

where U is a rectangular matrix with typical size equal to
(NcNl × Nc) or (NcNl × Nl). Inversion of A can thus
be carried out in an efficient manner using the matrix in-
version lemma [7]. Using the fact that C can be diagonal-
ized by applying the 2D Fourier operator Φ2 which is also
the projection matrix of the MRI reconstruction problem,
the amount of computation required for evaluating (7) can
be reduced by two orders of magnitude [3]. However, for
realistic MRI images, the computational burden per itera-
tion remains significant due to the rather large size of U .
Additional reduction of the amount of computations can be
achieved by neglecting perturbation matrix ∆ and assuming
that A ≈ C [3], at the expense of undesirable correlations
between opposite boundaries of the reconstructed image.
Our goal in deriving the next two techniques is to achieve
a high numerical efficiency without undesirable boundary
effects.

2.2. Generalized form of the GY construction

In order to obtain a normal matrix that lends itself to ef-
ficient inversion, our approach consists of introducing an
additional degree of freedom in the GY construction by re-
placing the canonical inner product which appears in the
convex duality relationships by a more general inner prod-
uct defined as:

< u|v >= uT Mv

where M is a symmetric positive definitive matrix. The re-
lationships between convex function f and its convex con-
jugate f∗ become2:

f∗(v) = supu{vT Mu − f(u)}
f(u) = supv{uT Mv − f∗(v)}

We introduce the following pair of auxiliary functions:

Glα(u) = uT Mu
2 − α

∑
c∈Cl

ϕ(uc)
G∗

lα(b) = bT Mb
2 + ψlα(b)

(10)

Provided that α is chosen such that Glα(·) be convex, which
holds for α ∈]0, δ[, Glα and G∗

lα still form a pair of convex
conjugate functions when ψlα is defined as:

ψlα(b) = sup
u

{
α

∑
c∈Cl

ϕ(uc) − (u − b)T M(u − b)
2

}
(11)

2These relationships can be derived in an elementary manner by ap-
plying standard convex duality formulas [6] to convex function g(w) =
f(T−1w); f convex and T such as TT T = M.
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The augmented criterion can then be expressed as:

Kα(x, b) = J0(x)+
2∑

l=1

λl
(ul − bl)T M(ul − bl)

2α
+

1
α

ψlα(bl)

and the update equations of x and b take the following form:

x̂ = A−1

(
Φ−1

2 y +
2∑

l=1

λl

2αNcNl
DT

l Mbl

)
(12)

with A = I +
2∑

l=1

λl

2αNcNl
DT

l MDl (13)

and Mb̂l = Mul − α
ul√

δ2 + |ul|2
(14)

As shown by (13), the main interest of this method is
to provide a way of imposing a specific structure to normal
matrix A through an appropriate choice of M . As an illus-
tration, we now show how M can be chosen so that A be
block-circulant.

As mentioned previously, DT D is quasi block-
circulant and can be written as DT D = C −UUT , where
C is block-circulant. We look for a matrix M such that:

DT MD = C

Let S be a matrix that satisfies DT S = U 3 and define:

M = I + SST (15)

By construction, M is symmetric positive definite and:

DT MD = DT D + UUT = C

Therefore, A can be diagonalized by application of Fourier
operator Φ2 which makes it easy to invert A and update
x according to (12). In addition, update of Mbl is made
simple by using the decomposition of M given in (15). As
shown in the next section, the resulting procedure presents
virtually the same numerical cost per iteration as the ap-
proximate form of the standard GY procedure, without the
disadvantage of undesirable boundary effects.

2.3. Vectorial form of the GY construction

This form was proposed in [8, 4] and yields an even simpler
form of normal matrix A in the case of MRI reconstruction.
The auxiliary functions are defined as:

Gα(x) = xT x
2 − Fα(x)

G∗
α(b) = bT b

2 + ψα(b)
(16)

Gα is convex when α < supx{ρ(∇2F (x))}−1, where ρ(·)
denotes the spectral radius. Here, this condition is met when

3Simple solutions to this equation exist when D is a fi rst difference
matrix.

α ∈]0, δ/ρ(DtD))[ and in this case, Gα and G∗
α form a pair

of convex conjugate functions provided that:

ψα(b) = sup
x

{
Fα(x) − (x − b)T (x − b)

2

}
(17)

The augmented criterion takes the following expression:

Kα(x, b) = J0(x)+
2∑

l=1

λl
(x − bl)T (x − bl)

2α
+

1
α

ψα(bl)

and the update equations of x and b take the following form:

x̂ = A−1

(
Φ−1

2 y +
2∑

l=1

λl

2αNcNl
bl

)
(18)

with A = I +
2∑

l=1

λl

2αNcNl
I (19)

and b̂l = x − αDT
l

ul√
δ2 + |ul|2

(20)

The main advantage of the vectorial form is that no matrix
inversion is needed since A is proportional to identity. This
simplicity is obtained at the expense of a convergence speed
lower than for the other procedures, as illustrated in the next
section.

3. RESULTS

3.1. Experimental comparison on the convergence
speed

In order to evaluate the effectiveness of the algorithms, tests
were performed on synthetic data with a 2D object of size
128 × 128. The four methods, i.e., standard exact and ap-
proximate GY, generalized GY, and vectorial GY were im-
plemented. Figure 1 shows the evolution of criterion J with
respect to time (left and center) and with respect to the num-
ber of iterations (right) for the four methods. It can be ob-
served that in terms of number of iterations, the vectorial
form of GY performs poorly whereas the other three tech-
niques exhibit very similar behaviors. However, in terms of
time or, equivalently, in terms of amount of computations,
the vectorial form of GY can be considered as an interest-
ing option due to its acceptable convergence speed and ease
of implementation, thanks to the simple expression of the
normal matrix. The exact standard form of GY performs
poorly whereas the approximate and generalized forms of
GY present the best performance. The generalized form
should certainly be preferred due to the absence of unde-
sirable boundary effects.

3.2. Reconstruction on real data

In order to demonstrate the ability of these methods to pro-
cess real world data, reconstruction of a 110×512×384 3D
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Fig. 1. Convergence rate comparison. Left: J(x) vs. time; center: J(x) vs. time, zoom without the exact standard GY form;
right: J(x) vs. number of iterations.

image of a knee4 was performed. The data were processed
in less that 100 minutes on a standard PC computer. Fig-
ure 2 shows a standard reconstruction (top) and the result
provided by the GY approach (bottom). As expected, re-
construction with an edge preserving penalty term provides
a significant improvement in noise reduction, especially in
the cartilage area, while adequately preserving discontinu-
ities.

4. CONCLUSION

The major contribution of this communication is the deriva-
tion of a generalized form of the GY construction which
provides means of obtaining a normal matrix predefined
structure. This property was used to significantly improve
the numerical efficiency of edge preserving MRI recon-
struction. These techniques can thus be implemented with
moderate computing power, thereby increasing their avail-
ability.
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tion à partir de radiographies,” in Actes 18e coll.
GRETSI, Toulouse, sep. 2001, pp. 183–186.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

Fig. 2. Results with real data: image obtained with classical
reconstruction (top) and with the GY approach (bottom).
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